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Anomalies !
Fits of weak Hamiltonian to data on B->K(*)ll, Bs->mu mu,
B->Xs gamma, B->phi ll, B->K*gamma prefer non-SM values.

Most (including speaker!) agree that best fit is for C9NP ~ -1..-2
but differ on significance

BSM interpretations can be constructed, though no 
particularly compelling framework has emerged
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Figure 7: For 4 favoured scenarios, we show the 3 � regions allowed by branching ratios

only (dashed green), by angular observables only (long-dashed blue) and by considering

both (red, with 1,2,3 � contours, corresponding to 68.3%, 95.5% and 99.7% confidence

levels). Each constraint corresponding to a subset of data includes also the inclusive and

b ! s� data.

giving RK = 1 by construction,

• (CNP
9 = CNP

10 , CNP
90 = CNP

100 ), disfavoured by the data on Bs ! µµ, which prefer a SM

value for C10, leading to a tension with the value of CNP
9 needed for B ! K⇤µµ

• (CNP
9 = �CNP

10 , CNP
90 = �CNP

100 ) and (CNP
9 = CNP

90 , CNP
10 = CNP

100 ) which could be interesting
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Figure 4: Allowed regions in the Re(CNP
9 )-Re(C 0

9) plane (left) and the Re(CNP
9 )-Re(CNP

10 ) plane
(right). The blue contours correspond to the 1 and 2� best fit regions. The green
and red short-dashed contours correspond to the 2� regions in scenarios with doubled
form factor uncertainties and doubled uncertainties from sub-leading non-factorizable
corrections, respectively.

all the hadronic uncertainties not related to form factors, i.e. the ones that are parametrized
as in (10) and (11). We observe that the negative value preferred for CNP

9 is above the 2� level
even for these conservative assumptions. We also observe that C 0

9 and CNP
10 are preferentially

positive, although they deviate from 0 less significantly than CNP
9 . The corresponding plots for

all interesting combinations of real Wilson coe�cients are collected in fig. 12 of appendix C,
together with the ��2 values of the corresponding best fit points.
It is also interesting to investigate which observables drive the tensions. In fig. 5, we compare

the global constraints in the Re(CNP
9 )-Re(C 0

9) and Re(CNP
9 )-Re(CNP

10 ) planes to the constraints
one gets only using branching ratios (green) or only using B ! K⇤µ+µ� angular observables
(red). We observe that the angular observables strongly prefer a negative C9 but are not very
sensitive to C 0

9 or C10. The branching ratio constraints have an approximate flat direction
CNP
9 ⇠ �C 0

9 and show a preference for CNP
10 > 0 in particular if CNP

9 > 0. In fact, from
branching ratios alone, one could get a good fit to the data with SM-like C9 and CNP

10 > 0.

3.5. Testing lepton flavour universality

So far, in our numerical analysis we have only considered the muonic b ! sµ+µ� modes
and the lepton flavour independent radiative b ! s� modes to probe the Wilson coe�cients

C(0)
7 , C(0)µ

9 and C(0)µ
10 , where the superscript µ indicates that in the semileptonic operators (3)

and (4) only muons are considered. In this section we will extend our analysis and include
also semileptonic operators that contain electrons. In particular, we will allow new physics in
the Wilson coe�cients Ce

9 and Ce
10 and confront them with the available data on B ! Ke+e�

from LHCb [6] and B ! Xse+e� from BaBar [57].
As mentioned already in the introduction, the recent measurement of the ratio RK of B !

Kµ+µ� and B ! Ke+e� branching ratios in the q2 bin [1, 6] GeV2 by LHCb [6] shows a 2.6�
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model-independent framework exists even in the heavy-quark limit, as the bin extends outside the

range of validity of QCD factorization, employed both here and in [38]. Therefore, we restrict

our investigation to the CP -averaged angular observables in the P (0)
i

basis, augmented by the CP

asymmetry PCP

3

, measured in the bin [1, 6] GeV2 [45, 49].

FIG. 5. Graphs for the B ! K⇤`+`� anomaly. Left panel: 68% and 95% CL bounds in the parameter

space of the power corrections a
V± and for a fit in the SM. We use a profile �2 including only the P (0)

i

observables in the bin [1, 6] GeV2. The origin of the axis corresponds to QCDF and the small dashed box

corresponds to the subspace for the LCSR of ref. [78] when the errors of V and A
1

are combined linearly.

Right panel: Profile �2 including only the angular observables in the P (0)
i

basis in the bin [1, 6] GeV2 as a

function of a BSM contribution to C
9

and setting all the other Wilson coefficients to their SM values. The

red and blue shades indicate the limits for the 68% and 95% CL. The dashed green line corresponds to the

case in which V� and V
0

are used to fix the soft form factors. In both cases �2

min

⇠ 1.

On the left-hand side of Fig. 5 we show the contours for the �2 constructed with this angular

data in the SM (all the Wilson coefficients set to their SM values), as a function of the power

corrections to the vector form factors a
V± and where we have profiled over the rest of the QCD

parameters. The �2 receives an important contribution from the measured P 0
5

, which in our plot

is represented by the overlaid diagonal contours obtained setting all the other QCD parameters to

their central values. This is consistent with the conclusions of the different analyses (eg ref. [50]),

and we also agree that the data favours a negative NP contribution to C
9

. However, in our case

the significance is much smaller, about 1� as in our approach the data can be accommodated quite

well by reasonable values of the power corrections. This is shown on the right hand side of Fig. 5

where we plot the ��2 as a function of the contribution of NP to C
9

(�2

min

⇠ 1) and where, (i) we
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Altmannshofer,
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also: Bobeth et al; Hurth-Mahmoudi; Silvestrini et al; Ghosh et al,...
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Prime suspects
C9 : coupling of a particular four-fermion operator

- easily obtained from Z’ exchanges

- vectorial (as opposed to chiral) coupling to leptons may be 
preferred by precision constraints and anomaly freedom
(naturally predicts RK ≠1, too)

Possible problem: BSM effects in C9 can be mimicked by 
a range of SM effects - how well are they controlled?

note - these effects are all lepton-flavour-universal so no 
relevance for RK and other lepton universality tests
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distribution, and “clean” observables, in helicity amplitudes. Section 3 contains a detailed

discussion of sources of hadronic uncertainties both in the factorizable and non-factorizable

contributions to the helicity amplitudes, and establishes the suppression of H+

V

. We also

employ a parameterization of form factors at low q2 which transparently separates the

constraints from kinematics and the heavy-quark limit from the issue of modelling power

corrections. Section 4 comprises a detailed phenomenology of the “clean” observables, with

particular attention to the low end of the low-q2 region, which has traditionally been cut o↵

ad hoc at q2 = 1GeV2. We find that the observables P
1

and PCP

3

(in the notation of [58])

in B̄ ! K̄⇤µ+µ� stand out as theoretically cleanest, translating to very good sensivity to

right-handed currents, via the Wilson coe�cients C 0
7

, C 0
9

, and C 0
10

. Specifically, we assess

the (theoretical) sensitivity to the real and imaginary parts of C 0
7

to be on the order of 10%

and 1%, respectively, with the sensitivity coming entirely from the region q2 < 3GeV2,

and dominated by the q2-interval [0.1, 2]GeV2. We also comment on the electronic mode,

which shows a theoretical sensitivity to C 0
7

very similar to the muonic mode. Throughout

we take into account both the small but nonzero values of right-handed Wilson coe�cients

in the SM and the e↵ect of a nonzero muon mass, and show that two known algebraic

relations in the massless case can be modified such that they hold, to excellent accuracy, in

the presence of a finite muon mass all the way down to the kinematic end point. Section 5

contains our conclusions.

2 Amplitudes and kinematic distribution

2.1 Weak Hamiltonian

The process B̄(p) ! M(k)`+`�, where M is a charmless final state (not necessarily a

single meson), is mediated by the �B = 1 weak e↵ective Hamiltonian, which is a sum

of hadronic and semileptonic parts (where “semileptonic” is understood to include the

magnetic penguin terms),

H
e↵

= Hhad

e↵

+Hsl

e↵

, (2.1)

with

Hhad

e↵

=
4G

Fp
2

X

p=u,c

�
p


C
1

Qp

1

+ C
2

Qp

2

+
X

i=3...6

C
i

P
i

+ C
8g

Q
8g

�
, (2.2)

Hsl

e↵

= �4G
Fp
2
�
t

h
C
7

Q
7�

+ C 0
7

Q0
7�

+ C
9

Q
9V

+ C 0
9

Q0
9V

+ C
10

Q
10A

+ C 0
10

Q0
10A

(2.3)

+C
S

Q
S

+ C 0
S

Q0
S

+ C
P

Q
P

+ C 0
P

Q0
P

+ C
T

Q
T

+ C 0
T

Q0
T

i
. (2.4)

The operators P
i

are given in [74], the Q
i

are defined as

Q
7�

=
e

16⇡2

m̂
b

s̄�
µ⌫

P
R

Fµ⌫b ,

Q
9V

=
↵
em

4⇡
(s̄�

µ

P
L

b)(l̄�µl) ,

Q
S

=
↵
em

4⇡

m̂
b

m
W

(s̄P
R

b)(l̄l) ,

Q
T

=
↵
em

4⇡

m̂
b

m
W

(s̄�
µ⌫

P
R

b)(l̄�µ⌫P
R

l) ,

Q
8g

=
g
s

16⇡2

m̂
b

s̄�
µ⌫

P
R

Gµ⌫b ,

Q
10A

=
↵
em

4⇡
(s̄�

µ

P
L

b)(l̄�µ�5l)
A

,

Q
P

=
↵
em

4⇡

m̂
b

m
W

(s̄P
R

b)(l̄�5l) ,

(2.5)
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Descotes-Genon et al; Altmannshofer et al; 
Crivellin et al; Gauld et al;  ...
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Helicity +1 suppressed in heavy-quark limit (in SM)
(basis for right-handed current tests)

λ=0 and λ=-1 amplitudes involve two nonperturbative form factors 
each, and nonlocal (“quark loop”) contributions.
Implies degeneracies between C9 and nonperturbative 
physics.  (Eg, rescale V-  and C9 by opposite amount.)

no photon pole:
vanishing relative 
contribution as q2->0              

B->Vll vector amplitudes

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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qq̄

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

Wednesday, 24 September 14

photon pole at q2=0 
                   
Only one form factor, drops out 
up to interference

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”

Christoph Bobeth Lattice Meets Phenomenology 16th September 2010 9 / 25
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                
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HV (�) / Ṽ�(q
2)C9 �V��(q

2)C 0
9 +

2mbmB

q2

⇣
T̃�(q

2)C7 � T̃��(q
2)C 0

7

⌘
�16⇡2m2

B

q2
h�(q

2)

HA(�) / Ṽ�(q
2)C10 � V��(q

2)C 0
10

1

Burdman, Hiller 2000

photon pole at q2=0

                     complicated
nonlocal correction

SJ, Martin Camalich 2012

Beneke, Feldmann, Seidel 2001

λ=+1/0/-1  helicity of vector meson



B->K*ll q2 dependence (sketch)
photon pole  
      [C7/q2]^2

          [C’7/q2]^2,

         [C7 C’7/q2]
BF

q2 = (mB-mV)2
q2 = 4ml2

↑

interference of
  C7     C9      C10      hadronic

 

BSM only:
 C’7    C’9    C’10   (hadronic)

(may involve Z‘ etc) 

narrow 
charm

resonances open charm region
C9, C10 dominate

resonant structure

“low q2 / large recoil”
will mostly talk about this

“high q2 / low recoil”
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Form factors
Helicity amplitudes naturally involve helicity form factors

- can express as linear combinations of traditional “transversity” FF 
brings in dependence on q2 and meson masses - intransparent.
(However S is essentially A0 in the traditional nomenclature.)

- helicity form form factors directly relevant to B->V l l including the 
LHCb anomaly

in particular, V-/T- (co-)determines the zero crossing
of both AFB and of S5/P5’, as far as form factors are concerned

Form factors are a dominant source of theory uncertainty

At low q2 (more or less) directly accessed by light-cone sum rules 
(LCSR), with associated systematics.
Reduce sensitivity by taking ratios; heavy-quark expansions; etc

~ Bharucha/Feldmann/Wick 2010

definitions here:
SJ, Martin Camalich 2012
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_
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1
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The helicity amplitudes HV , HA, HP , HS are related to the “standard” helicity ampli-

tudes [18, 39] as follows,

H�L/R = i
⌥
f
1

2
(HV (⇥)⇥HA(⇥)), At = i

⌥
q2

2m⇣

⌥
f HP , AS = �i

⌥
f HS , (2.13)

where f is a normalization factor, which for M = K⇥ and the conventions of [39] is equal

to F defined in section 2.3 below. The helicity amplitudes H±1,L(R) are often expressed in

terms of transversity amplitudes,

A⌃L(R) =
1⌥
2
(H+1,L(R) +H�1,L(R)), A⇧L(R) =

1⌥
2
(H+1,L(R) �H�1,L(R)). (2.14)

However, we will work with helicity amplitudes throughout this paper, for reasons to

become clear below. Explicitly, we have

HV (⇥) = �iN

⇧
C9ṼL� + C ⌅

9ṼR� +
m2

B

q2

⇤
2 m̂b

mB
(C7T̃L� + C ⌅

7T̃R�)� 16⇤2h�

⌅⌃
, (2.15)

HA(⇥) = �iN(C10ṼL� + C ⌅
10ṼR�), (2.16)

HTR(⇥) = �iN
4 m̂bmB

mW

⌥
q2

CT T̃L�, (2.17)

HTL(⇥) = �iN
4 m̂bmB

mW

⌥
q2

C ⌅
T T̃R�, (2.18)

HS = iN
m̂b

mW
(CSS̃L + C ⌅

SS̃R), (2.19)

HP = iN

⇧
m̂b

mW
(CP S̃L + C ⌅

P S̃R)

+
2m⇣m̂b

q2

⇤
C10

�
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S̃R

⇥
+ C ⌅

10

�
S̃R � ms

mb
S̃L

⇥⌅⌃
, (2.20)

where

N = �4GFmB⌥
2

e2

16⇤2
⇥t

is a normalisation factor,

h� ⇤ i

m2
B

�µ⇥(⇥)ahadµ (2.21)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable e�ects,

and we have defined helicity form factors

� imBṼL(R)�(q
2) = ⌅M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⇧, (2.22)

m2
BT̃L(R)�(q

2) = �⇥µ(⇥)q⇤⌅M(⇥)|s̄⌅µ⇤PR(L)b|B̄⇧, (2.23)

imBS̃L(R)(q
2) = ⌅M(⇥ = 0)|s̄PR(L)b|B̄⇧. (2.24)

These expressions are still general enough to describe an arbitrary charmless final state

M . Concretely, for a two-spinless-meson final state, not necessarily originating from a

resonance, the form factors will carry dependence on the dimeson invariant mass k2 and

its angular momentum L, in addition to the dilepton invariant mass q2.

– 7 –

(Burdman; Beneke/Feldmann/Seidel)
SJ, Martin Camalich 2012,2014; ...



Form factor relations
The heavy-quark limit predicts simple relations between the 
(helicity) form factors, for instance:

- Eliminates form factor dependence from some observables (eg 
P2’ and zero of AFB) almost completely, up to power corrections

- pure HQ limit: T-(0)/V-(0) ~ 1.05 > 1 

- compare to: T-(0)/V-(0) = 0.94 +/- 0.04 
  LCSR computation with correlated parameter variations.
  Difference consistent with power correction; remarkable 5% error                     

and largely cancel each other. One may wonder whether this is an indication
that higher-order or long-distance e↵ects might be predominantly C7-like,
too.

Once can also study the sensitivity to variations of the Wilson coe�cients
(such as in BSM scenarios):

C̃e↵
7 (q2 = 3GeV2) = �0.388� 0.018i� (0.070 + 0.009i)�C̄2 + �C7,(11)

C̃e↵
9 (q2 = 3GeV2) = 4.41 + 1.93 �C̄1 + (0.37 + 0.03i)�C̄2 + �C9. (12)

Note the (very) large number multiplying �C̄1. C̄1 is the “small”, 1/N -
suppressed tree-level Wilson coe�cient, generated primarily through running
from the weak scale in the SM. This prefactor also grows in magnitude from
1.76 at q2 = 0.1GeV2 to 2.18 at q2 = 6GeV2. This has the potential of
mimicking a negative shift in C9 that grows with q2.

The spectator scattering contribution cannot be split in a similar fashion
(although one could try to see numerically whether a split is possible that
could absorb the bulk of the q2 dependence. Before that, it is important to
see how sizable it is altogether. It includes annihilation, which starts at ↵0

s.
The helicity-+ amplitudes are power-suppressed altogether, but should

be written down (form factor + a power LD power correction).

1.2 Form factors in the heavy-quark expansion

The form factors are not known from first principles (and only defined in a
narrow-width limit, if one insists on a K⇤ mass shell). However, they again
obey relations in the heavy-quark limit, which follow from (BF 2000) as:
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where we can replace A0 by V0 or T0 in the denominator of the spectator
scattering term, and where

L = � 2E

mB � 2E
ln

2E

mB
, (17)
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“spectator scattering”: 
mainly dependent on B 
meson LCDA
but as suppressed

“vertex” correction: 
parameter-free

Charles et al 1999
Beneke, Feldmann 2000
...
(SJ, Martin Camalich, WIP)

Descotes-Genon, Hofer, Matias, Virto

[D Straub, priv comm based on 
Bharucha, Straub, Zwicky 1503.05534]

Beneke,Feldmann 2000



Forward-backward asymmetry

pink: full scan over all theory errors

Surprising that pure HQ limit appears to 
agree reasonably well with data !

LHCb Moriond 2015 (3 fb-1)
downward shift of AFB relative to
LCSR-based prediction

Such a shift is largely equivalent to a
rightward shift of the zero crossing.

Zero crossing in LCSR has been
significantly lower than heavy-quark limit
for many years (as low as <3 GeV2)

blue line: pure heavy-quark limit, no 
power corrections
light blue: “68% Gaussian” theory error
(including power corrections)
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Figure 5: The CP -averaged observables in bins of q2. The shaded boxes show the SM prediction
taken from Ref. [49].
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(Bharucha, Straub, Zwicky 2015)

LHCB-CONF-2015-002

“Clean” observables at present precision have noticeable form factor dependence
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• hence

hence 

- “naively factorizing” part of the helicity amplitudes HV,A+ strongly 
suppressed as a consequence of chiral SM weak interactions 
- We see the suppression is particularly strong near low-q2 endpoint
- Form factor relations imply reduced uncertainties in suitable observables

2"$OJ\].$,U(7454I($'E(89,,"8&9'%(

Beyond the SM, HV and HA may receive extra contributions from modified Wilson co-

e⇤cients C7, C9, C10, as well as the parity-conjugate operators if present. Furthermore, in

the most general BSM there will a be further “scalar” and three “tensor” amplitudes. None

of this, however, matters for tensioning the data against the SM. On the other hand, the

fact that C9 always appears in linear combination with h� illustrates that particular care is

needed in attributing the data to a BSM value of this coe⇤cient, as was done in [? ]. (The

situation is better for C7 or its counterpart C ⇥
7, which can be picked out by considering the

q2 ⇥ 0 region [1], which is also related to B ⇤ K�⇥ and B ⇤ Xs⇥ decay.)

A. Minimal parameterisation of nonperturbative QCD

The helicity form factors V (⇤) and T (⇤) replace the more traditional transversity form

factors, to which they are related by a change of basis (of quark bilinears), i.e. the two sets

are related by linear relations. In either basis they obey certain algebraic constraints, and

further ones in the heavy-quark limit.

In practice, they make for very simple helicity amplitudes, eliminating awkward kinematic

factors, and the algebraic and heavy-quark limit constraints look particularly simple. In [1],

a parameterisation of the following form wa suggested for the form factors:

F (q2) = F⇤(q2) + aF + bF q
2/m2

B +O([q2/m2
B]

2). (3)

Here F denotes any form factor, F⇤(q2) = F⇤(0)/(1� q2/m2
B)

p +�F (�s; q2) carries the q2

dependence of the heavy-quark limit, with p = 2 or 3 depending on the form factor. The

first term follows from heavy-quark scaling relations when neglecting �s [3], and the second

term is computable in QCD factorization [4] as convolutions of perturbative (in �s) kernels

and light-cone distribution amplitudes of the B and K�. aF , bF and the remainder term in

(3) are all of order ⇥/mB in the heavy-quark expansion [4]. Note that the heavy-quark limit

only fixes F⇤(0) up to a power correction; in particular we can absorb aF into F⇤(0) and

replace F⇤(0) ⇤ F (0) in (3) for a given form factor.

The parameterisation (3) amounts to Taylor-expanding the power-suppressed part about

q2 = 0; higher-order terms should be below (1-2%) for q2 < 6 GeV2 throughout the low-q2

region and smaller still at the lower end, and will be neglected in the following.
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�imBV�(q2) = ⌅M(⇥)|s̄�/�(⇥)PLb|B̄⇧,

m2
BT�(q2) = ��µ(⇥)q⇤⌅M(⇥)|s̄⇤µ⇤PRb|B̄⇧,

imBS(q2) = ⌅M(⇥ = 0)|s̄PRb|B̄⇧

(similar to Bharucha et al.’10)

Form factors in the helicity basis
I T± related to T1,2, T0 related to T2,3

I V± related to V , A1 and V0 to A1,2, S related to A0

These form factors verify

T+(q2) = O(q2)⇥O(�/mb),

V+(q2) = O(�/mb).

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 5 / 15

Burdman, Hiller 1999
(quark picture)

from heavy-quark/
large energy 
symmetry

q2 dependence in heavy-quark limit not known 
(model by a power p, and/or a pole model)

Beneke, Feldmann, 
Seidel 2001 (QCDF)

aF, bF are O(Λ/mb)
- varied at +/-10% of generic leading-power analogue (+/-0.03 and +/-0.1 respectively) 
for error bars on previous slides

One can eliminate two aF and bF by choice of two reference (“soft”) form factors. 
However, unambiguous heavy-quark limit for form factor ratios (eg T-/V-): These are 
invariant under change of form factor scheme, as are any observables

Any calculation (eg LCSR) can be expressed in terms of the general parameterisation
- but then one is using dynamical/model input beyond the heavy-quark expansion

Proposal (                                    ) to center ranges for aF, bF around LCSR predictions 
(but replace the corresponding errors by ad hoc 10% ranges).

No theoretical justification given for this. Practical effect is to obtain predictions similar 
to LCSR - this is so by construction, and is not an independent check.

SJ, Martin Camalich 2012

Descotes-Genon et al 2014

General parameterisation of power corrections



Power corrections, scheme independence
Example

Many independent power-correction parameters appear.

They appear only in form-factor-scheme-independent combinations.

Example: choose either V- as “soft” (reference) form factor, then aV-=0, 
                or can choose T-, then aT-=0.
                Because V-/T- is fixed in QCD, the difference (aV- - aT-) agrees   
                in both schemes, up to O(Λ2/mb2).

Numerical differences between different schemes are estimators of 
higher powers (beyond the truncated parameterisation).

SJ,  Martin Camalich 1412.3183

weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in

these limits and in the SM 5,

P
1

= 0, (23)
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where C
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9

(q2) + 2mb mB
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, C
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9
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, and the P (0)
i

are functions of the

Wilson coefficients alone.

Thus, the leading sources of uncertainties for the observables in the P (0)
i

basis are due to the

presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-

tions. To see this explicitly, note that
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), (25)

where for simplicity we have assumed real Wilson coefficients, ˜h
+

denotes the nonlocal term h
�

with its leading term removed (absorbed into Ce↵

9

), and we have neglected the difference between

m
b

and m
B

as a higher-order effect. We see in in the second term on the first line the presence of

the power correction combination a
V� � a

T� . This is invariant under change of soft form factor

scheme [cf. (9)] – in particular it does not matter whether V� or T� is identified with ⇠?, implying

a
V� = 0 or a

T� = 0, respectively. Similarly, power corrections to the helicity-zero form factors

enter only in the combination (a
V0 - a

T0) (second line). Both can be understood by observing

that form factors cancel out of P 0
5

completely if Ce↵

7

, the � = + amplitudes, and nonfactorizable

corrections are all neglected. As a result, form factor uncertainties enter only through interference

of the tensor and vector form factors, and of form factors and nonfactorizable corrections. This

interference is most important if Ce↵

7

and Ce↵

9

(q2) are comparable, as happens in particular around

the zero-crossing of P 0
5

. The term displayed on the last line involves nonfactorizable corrections.

All three terms demonstrate how the soft form factors with their associated uncertainties re-enter

at subleading power. The full expression is quite lengthy and depends on all power-correction

5 We will ignore in this discussion the strange quark mass which produces an effect suppressed by ms/mb in P1.

16

(truncated after 3 out of 11 independent power-correction terms!)

manifestly form-factor-scheme-independent

heavy-quark-
limit result

(“charm 
loop” power 
correction)
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Angular observable P5’

pink: full scan over all theory errors

light blue: “68% Gaussian” theory error
                                              

LHCb 2013 (1 fb-1)

LHCb Moriond 2015 (3 fb-1)

red line: heavy-quark limit, no power 
corrections

(Ignore 6..8 GeV bin, above perturbative charm threshold and very close to resonances.)

For Gaussian errors [corresponding to what most authors employ], there is a noticeable 
deviation in a single bin; but also here less drastic than with LCSR-based theory

SJ, Martin Camalich, preliminary
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dilepton can have J=0 or J=1
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photon couples only to vector leptonic current. At q2 = 0 photon pole
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?

K
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B

0

lepton current                     form factor                     

B
0 K

∗

µ
−

µ
+

γZ NP

B->K*l+ l-   decay amplitude

correct to lowest order in electromagnetism      
exact in QCD (if K* width neglected, or dealing with K pi final state)       

}

7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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+ strong interactions!

more properly:

often expressed in terms of transversity amplitudes,

A⇧L(R) =
1⌃
2
(H+1,L(R)+H�1,L(R)), A⌅L(R) =

1⌃
2
(H+1,L(R)�H�1,L(R)). (16)

However, we will work with helicity amplitudes throughout this paper, for reasons
to become clear below. Explicitly, we have

HV (⇥) = N
⌥
C9V ṼL⇥ + C ⇤

9V ṼR⇥ �
m2

B

q2

⇧2 m̂b

mB
(C7�T̃L⇥ + C ⇤

7�T̃R⇥)� 16⇤2h⇥

⌃�
,

(17)

HA(⇥) = N(C10AṼL⇥ + C ⇤
10AṼR⇥), (18)

HTR(⇥) = N
4 m̂b mB

mW

 
q2

CT T̃L⇥, (19)

HTL(⇥) = N
4 m̂b mB

mW

 
q2

C ⇤
T T̃R⇥, (20)

HS = �N
m̂b

mW
(CSS̃L + C ⇤

SS̃R), (21)

HP = �N
⌥ m̂b

mW
(CP S̃L + C ⇤

P S̃R)

+
2mlm̂b

q2

⇤
C10A

�
S̃L � ms

mb
S̃R

⇥
+ C ⇤

10A

�
S̃R � ms

mb
S̃L

⇥⌅�
, (22)

where

N = �4GFmB⌃
2

e2

16⇤2
⇥t

is a normalisation factor,

h⇥ ⇥ i

m2
B

�µ⇥(⇥)ahadµ (23)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable
e�ects, and we have defined helicity form factors

�imBṼL(R)⇥(q
2) = ⇤M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⌅, (24)

m2
BT̃L(R)⇥(q

2) = �⇥µ(⇥)q⌅⇤M(⇥)|s̄⌅µ⌅PR(L)b|B̄⌅, (25)

imBS̃L(R)(q
2) = ⇤M(⇥ = 0)|s̄PR(L)b|B̄⌅. (26)

These expressions are still general enough to describe an arbitrary charmless final
state M . Concretely, for a two-spinless-meson final state, not necessarily origi-
nating from a resonance, the form factors will carry dependence on the dimeson
invariant mass k2 and its angular momentum L, in addition to the dilepton in-
variant mass q2.

8

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) = �i
e2

q2

⇥
d4xe�iq·x⌥ + �|jem,lept

µ (x)|0�
⇥

d4y eiq·y⌥M |jem,had,µ(y)Hhad
e� (0)|B̄�

⌅ e2

q2
Lµ
V a

had
µ ,

(11)
where jem,had,µ =

�
q eq q̄�

µq. Hence, while this contribution does not naively
factorize, it can be absorbed into aV µ in (8). Before discussing the amplitudes
in more detail, we comment on the approximations implicit in and some conse-
quences of (8), (11)

• The semileptonic weak Hamiltonian is the most general one up to dimen-
sion six and can accomodate arbitrary new physics with a heavy mass scale.
This includes all the standard scenarios, such as supersymmetry, extra di-
mensions and little Higgs. In the Standard Model, C7, C9 and C10 are
sizable, C ⇤

7 is suppressed by ms/mb, and the remaining Wilson coe⇤cients
are negligible.

• The hadronic weak Hamiltonian is the Standard Model one, neglecting the
small electroweak penguin terms. Beyond the Standard Model, there is
a large number of extra operators; however unless new physics e�ects are
dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
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}

7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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qq̄

HV (�) / Ṽ�(q
2)C9 �V��(q

2)C 0
9 +

2mbmB

q2

⇣
T̃�(q

2)C7 � T̃��(q
2)C 0

7

⌘
�16⇡2m2

B

q2
h�(q

2)

HA(�) / Ṽ�(q
2)C10 � V��(q

2)C 0
10

1

+ strong interactions!

more properly:

often expressed in terms of transversity amplitudes,

A⇧L(R) =
1⌃
2
(H+1,L(R)+H�1,L(R)), A⌅L(R) =

1⌃
2
(H+1,L(R)�H�1,L(R)). (16)

However, we will work with helicity amplitudes throughout this paper, for reasons
to become clear below. Explicitly, we have

HV (⇥) = N
⌥
C9V ṼL⇥ + C ⇤

9V ṼR⇥ �
m2

B

q2

⇧2 m̂b

mB
(C7�T̃L⇥ + C ⇤

7�T̃R⇥)� 16⇤2h⇥

⌃�
,

(17)

HA(⇥) = N(C10AṼL⇥ + C ⇤
10AṼR⇥), (18)

HTR(⇥) = N
4 m̂b mB

mW

 
q2

CT T̃L⇥, (19)

HTL(⇥) = N
4 m̂b mB

mW

 
q2

C ⇤
T T̃R⇥, (20)

HS = �N
m̂b

mW
(CSS̃L + C ⇤

SS̃R), (21)

HP = �N
⌥ m̂b

mW
(CP S̃L + C ⇤

P S̃R)

+
2mlm̂b

q2

⇤
C10A

�
S̃L � ms

mb
S̃R

⇥
+ C ⇤

10A

�
S̃R � ms

mb
S̃L

⇥⌅�
, (22)

where

N = �4GFmB⌃
2

e2

16⇤2
⇥t

is a normalisation factor,

h⇥ ⇥ i

m2
B

�µ⇥(⇥)ahadµ (23)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable
e�ects, and we have defined helicity form factors

�imBṼL(R)⇥(q
2) = ⇤M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⌅, (24)

m2
BT̃L(R)⇥(q

2) = �⇥µ(⇥)q⌅⇤M(⇥)|s̄⌅µ⌅PR(L)b|B̄⌅, (25)

imBS̃L(R)(q
2) = ⇤M(⇥ = 0)|s̄PR(L)b|B̄⌅. (26)

These expressions are still general enough to describe an arbitrary charmless final
state M . Concretely, for a two-spinless-meson final state, not necessarily origi-
nating from a resonance, the form factors will carry dependence on the dimeson
invariant mass k2 and its angular momentum L, in addition to the dilepton in-
variant mass q2.

8

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) = �i
e2

q2

⇥
d4xe�iq·x⌥ + �|jem,lept

µ (x)|0�
⇥

d4y eiq·y⌥M |jem,had,µ(y)Hhad
e� (0)|B̄�

⌅ e2

q2
Lµ
V a

had
µ ,

(11)
where jem,had,µ =

�
q eq q̄�

µq. Hence, while this contribution does not naively
factorize, it can be absorbed into aV µ in (8). Before discussing the amplitudes
in more detail, we comment on the approximations implicit in and some conse-
quences of (8), (11)

• The semileptonic weak Hamiltonian is the most general one up to dimen-
sion six and can accomodate arbitrary new physics with a heavy mass scale.
This includes all the standard scenarios, such as supersymmetry, extra di-
mensions and little Higgs. In the Standard Model, C7, C9 and C10 are
sizable, C ⇤

7 is suppressed by ms/mb, and the remaining Wilson coe⇤cients
are negligible.

• The hadronic weak Hamiltonian is the Standard Model one, neglecting the
small electroweak penguin terms. Beyond the Standard Model, there is
a large number of extra operators; however unless new physics e�ects are
dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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nonlocal, nonperturbative, large 
normalisation (Vcb* Vcs  C2 ) 
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   
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γZ NP

B->K*l+ l-   decay amplitude

correct to lowest order in electromagnetism      
exact in QCD (if K* width neglected, or dealing with K pi final state)       

}

7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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qq̄

HV (�) / Ṽ�(q
2)C9 �V��(q

2)C 0
9 +

2mbmB

q2

⇣
T̃�(q

2)C7 � T̃��(q
2)C 0

7

⌘
�16⇡2m2

B

q2
h�(q

2)

HA(�) / Ṽ�(q
2)C10 � V��(q

2)C 0
10

1

traditional “ad hoc fix” :    C9 -> C9 + Y(q2) = C9eff(q2) ,
                                        C7 -> C7eff    

                 

+ strong interactions!

more properly:

often expressed in terms of transversity amplitudes,

A⇧L(R) =
1⌃
2
(H+1,L(R)+H�1,L(R)), A⌅L(R) =

1⌃
2
(H+1,L(R)�H�1,L(R)). (16)

However, we will work with helicity amplitudes throughout this paper, for reasons
to become clear below. Explicitly, we have

HV (⇥) = N
⌥
C9V ṼL⇥ + C ⇤

9V ṼR⇥ �
m2

B

q2

⇧2 m̂b

mB
(C7�T̃L⇥ + C ⇤

7�T̃R⇥)� 16⇤2h⇥

⌃�
,

(17)

HA(⇥) = N(C10AṼL⇥ + C ⇤
10AṼR⇥), (18)

HTR(⇥) = N
4 m̂b mB

mW

 
q2

CT T̃L⇥, (19)

HTL(⇥) = N
4 m̂b mB

mW

 
q2

C ⇤
T T̃R⇥, (20)

HS = �N
m̂b

mW
(CSS̃L + C ⇤

SS̃R), (21)

HP = �N
⌥ m̂b

mW
(CP S̃L + C ⇤

P S̃R)

+
2mlm̂b

q2

⇤
C10A

�
S̃L � ms

mb
S̃R

⇥
+ C ⇤

10A

�
S̃R � ms

mb
S̃L

⇥⌅�
, (22)

where

N = �4GFmB⌃
2

e2

16⇤2
⇥t

is a normalisation factor,

h⇥ ⇥ i

m2
B

�µ⇥(⇥)ahadµ (23)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable
e�ects, and we have defined helicity form factors

�imBṼL(R)⇥(q
2) = ⇤M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⌅, (24)

m2
BT̃L(R)⇥(q

2) = �⇥µ(⇥)q⌅⇤M(⇥)|s̄⌅µ⌅PR(L)b|B̄⌅, (25)

imBS̃L(R)(q
2) = ⇤M(⇥ = 0)|s̄PR(L)b|B̄⌅. (26)

These expressions are still general enough to describe an arbitrary charmless final
state M . Concretely, for a two-spinless-meson final state, not necessarily origi-
nating from a resonance, the form factors will carry dependence on the dimeson
invariant mass k2 and its angular momentum L, in addition to the dilepton in-
variant mass q2.

8

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) = �i
e2

q2

⇥
d4xe�iq·x⌥ + �|jem,lept

µ (x)|0�
⇥

d4y eiq·y⌥M |jem,had,µ(y)Hhad
e� (0)|B̄�

⌅ e2

q2
Lµ
V a

had
µ ,

(11)
where jem,had,µ =

�
q eq q̄�

µq. Hence, while this contribution does not naively
factorize, it can be absorbed into aV µ in (8). Before discussing the amplitudes
in more detail, we comment on the approximations implicit in and some conse-
quences of (8), (11)

• The semileptonic weak Hamiltonian is the most general one up to dimen-
sion six and can accomodate arbitrary new physics with a heavy mass scale.
This includes all the standard scenarios, such as supersymmetry, extra di-
mensions and little Higgs. In the Standard Model, C7, C9 and C10 are
sizable, C ⇤

7 is suppressed by ms/mb, and the remaining Wilson coe⇤cients
are negligible.

• The hadronic weak Hamiltonian is the Standard Model one, neglecting the
small electroweak penguin terms. Beyond the Standard Model, there is
a large number of extra operators; however unless new physics e�ects are
dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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nonlocal, nonperturbative, large 
normalisation (Vcb* Vcs  C2 ) 

   “taking into account the charm loop”                 



      

Nonlocal term / charm loop

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     
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7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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HV (�) / Ṽ�(q
2)C9 �V��(q

2)C 0
9 +

2mbmB

q2

⇣
T̃�(q

2)C7 � T̃��(q
2)C 0

7

⌘
�16⇡2m2

B

q2
h�(q

2)

HA(�) / Ṽ�(q
2)C10 � V��(q

2)C 0
10

1

Beneke, Feldmann, Seidel 2001, 2004

traditional “ad hoc fix” :    C9 -> C9 + Y(q2) = C9eff(q2) ,
                                        C7 -> C7eff    

                 

+ strong interactions!

more properly:

often expressed in terms of transversity amplitudes,

A⇧L(R) =
1⌃
2
(H+1,L(R)+H�1,L(R)), A⌅L(R) =

1⌃
2
(H+1,L(R)�H�1,L(R)). (16)

However, we will work with helicity amplitudes throughout this paper, for reasons
to become clear below. Explicitly, we have

HV (⇥) = N
⌥
C9V ṼL⇥ + C ⇤

9V ṼR⇥ �
m2

B

q2

⇧2 m̂b

mB
(C7�T̃L⇥ + C ⇤

7�T̃R⇥)� 16⇤2h⇥

⌃�
,

(17)

HA(⇥) = N(C10AṼL⇥ + C ⇤
10AṼR⇥), (18)

HTR(⇥) = N
4 m̂b mB

mW

 
q2

CT T̃L⇥, (19)

HTL(⇥) = N
4 m̂b mB

mW

 
q2

C ⇤
T T̃R⇥, (20)

HS = �N
m̂b

mW
(CSS̃L + C ⇤

SS̃R), (21)

HP = �N
⌥ m̂b

mW
(CP S̃L + C ⇤

P S̃R)

+
2mlm̂b

q2

⇤
C10A

�
S̃L � ms

mb
S̃R

⇥
+ C ⇤

10A

�
S̃R � ms

mb
S̃L

⇥⌅�
, (22)

where

N = �4GFmB⌃
2

e2

16⇤2
⇥t

is a normalisation factor,

h⇥ ⇥ i

m2
B

�µ⇥(⇥)ahadµ (23)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable
e�ects, and we have defined helicity form factors

�imBṼL(R)⇥(q
2) = ⇤M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⌅, (24)

m2
BT̃L(R)⇥(q

2) = �⇥µ(⇥)q⌅⇤M(⇥)|s̄⌅µ⌅PR(L)b|B̄⌅, (25)

imBS̃L(R)(q
2) = ⇤M(⇥ = 0)|s̄PR(L)b|B̄⌅. (26)

These expressions are still general enough to describe an arbitrary charmless final
state M . Concretely, for a two-spinless-meson final state, not necessarily origi-
nating from a resonance, the form factors will carry dependence on the dimeson
invariant mass k2 and its angular momentum L, in addition to the dilepton in-
variant mass q2.

8

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) = �i
e2

q2

⇥
d4xe�iq·x⌥ + �|jem,lept

µ (x)|0�
⇥

d4y eiq·y⌥M |jem,had,µ(y)Hhad
e� (0)|B̄�

⌅ e2

q2
Lµ
V a

had
µ ,

(11)
where jem,had,µ =

�
q eq q̄�

µq. Hence, while this contribution does not naively
factorize, it can be absorbed into aV µ in (8). Before discussing the amplitudes
in more detail, we comment on the approximations implicit in and some conse-
quences of (8), (11)

• The semileptonic weak Hamiltonian is the most general one up to dimen-
sion six and can accomodate arbitrary new physics with a heavy mass scale.
This includes all the standard scenarios, such as supersymmetry, extra di-
mensions and little Higgs. In the Standard Model, C7, C9 and C10 are
sizable, C ⇤

7 is suppressed by ms/mb, and the remaining Wilson coe⇤cients
are negligible.

• The hadronic weak Hamiltonian is the Standard Model one, neglecting the
small electroweak penguin terms. Beyond the Standard Model, there is
a large number of extra operators; however unless new physics e�ects are
dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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6

nonlocal, nonperturbative, large 
normalisation (Vcb* Vcs  C2 ) 

* for C7eff  this seems ok at lowest order (pure UV effect; scheme independence)
* for C9eff  amounts to factorisation of scales ~ mb (, mc ,q2) and Λ (soft QCD)
* not justified in large-N limit (broken already at leading logarithmic order)
* what about QCD corrections?
* not a priori clear whether this even gets one closer to the true result!

only known justification is a heavy-quark expansion
in Λ/mb (just like inclusive decay is treated !)

   “taking into account the charm loop”                 



      

Nonlocal term - another look
traditional “ad hoc fix” : C9 -> C9 + Y(q2) = C9eff(q2) ,  C7 -> C7eff

dominant effect: charm loop, proportional to (z = 4 mc2/q2)
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leading order contribution from the electromagnetic dipole operator O7 reads Ti (q
2) =

C7Ti(q
2) + · · · , where Ti(q

2) denote the tensor form factors. Including also the four-
quark operators (but neglecting for the moment annihilation contributions), the leading
logarithmic expressions are [11]

(7)T1
(

q2
)

= Ceff7 T1
(

q2
)

+ Y
(

q2
) q2

2mb(MB + mK∗)
V
(

q2
)

,

(8)T2
(

q2
)= Ceff7 T2

(

q2
)+ Y

(

q2
) q2

2mb(MB − mK∗)
A1
(

q2
)

,

(9)T3
(

q2
)= Ceff7 T3

(

q2
)+ Y

(

q2
)

[

MB − mK∗

2mb
A2
(

q2
)− MB + mK∗

2mb
A1
(

q2
)

]

,

with Ceff7 = C7−C3/3−4C4/9−20C5/3−80C6/9= C7−(4#C3− #C5)/9−(4#C4− #C6)/3
and

Y (s) = h(s,mc)(3#C1 + #C2 + 3#C3 + #C4 + 3#C5 + #C6)
− 1
2
h(s,mb)

(

4(#C3 + #C4) + 3#C5 + #C6
)

− 1
2
h(s,0)(#C3 + 3#C4)

(10)+ 2
9

(

2
3

#C3 + 2#C4 + 16
3

#C5
)

.

The function

h(s,mq) = −4
9

(

ln
m2

q

µ2
− 2
3

− z

)

(11)− 4
9
(2+ z)

√

|z − 1|



















arctan
1√

z − 1
, z > 1,

ln
1+

√
1− z√
z

− iπ

2
, z ! 1

is related to the basic fermion loop. (Here z is defined as 4m2
q/s.) Y (s) is given in the NDR

scheme with anticommuting γ5 and with respect to the operator basis of [6]. Since C9 is
basis-dependent starting from next-to-leading logarithmic order, the terms not proportional
to h(s,mq) differ from those given in [7]. The contributions from the four-quark operators
O1−6 are usually combined with the coefficient C9 into an “effective” (basis- and scheme-
independent) Wilson coefficient Ceff9 (q2) = C9 + Y (q2).
The results of this paper are restricted to the kinematic region in which the energy of

the final state meson scales with the heavy quark mass in the heavy quark limit. In practice
we identify this with the region below the charm pair production threshold q2 < 4m2

c ≈
7 GeV2. The various form factors appearing in (7)–(9) are then related by symmetries
[4,5]. Adopting the notation of [4], (7)–(9) simplify to

(12)T1
(

q2
)

≡ T⊥
(

q2
)

= ξ⊥
(

q2
)

[

Ceff7 δ1 + q2

2mbMB
Y
(

q2
)

]

,

(13)T2
(

q2
)= 2E

MB
T⊥
(

q2
)

,
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�F?(k) = 8Msp(�)
⌧
1

ū

�

?(k)

*
1

l+

+

+

, (18)

⌧
1

ū

�

?(k)
=

Z 1

0
du

�V
?(k)(u)

ū
,

*
1

l+

+

+

=
Z 1

0

dl+
l+

�B
+(l+) =

1

�B
. (19)

These relations hold up to corrections of ⇤/E ⇤/mB, and ↵2
s. However,

kinematic expressions appearing (such as MB/(2E)) are accurate at order
mV /mB. The expressions are all consistent with those in our JHEP paper;
an independent check (or re-check).

[CHECK: is the spec scattering normalisation in A0/V0, which follows
from that in T0/A0, correct? In any case seems suppressed by q2/m2

B and
m2

V /m
2
B. If spectator scattering is indeed absent or suppressed, then A0/V0

could be a clean probe of power corrections, uncontaminated by uncertainties
of �B. Do the equations of motion say something about this? Note that
L ! 1 as E ! mB/2. In this limit A0/V0 ! 1, an exact relation implied by
the equations of motion. So it isn’t such a good probe of power corrections:
Only at the level of the slope will they di↵er.]

The helicity +1 form factors are entirely power-supressed relative to the
helicity �1 ones.

There are no heavy-quark relations between form factors of di↵erent he-
licity. This is why the “clean” observables of Matias et al will be particularly
relevant for reducing uncertainties in a model-independent fashion, much
more so than when using LCSR numbers, even though the fact that LHCb
has published correlated errors for the entire angular distribution allows for
a simple transition between observable bases.

1.2.1 Some numbers

At LL, one has (for BFS 2004 input parameters except for charm mass)

Ce↵
9 =

(
4.18|C9 + (0.22 + 0.05i)|Y (mc = mpole

c = 1.7GeV),

4.18|C9 + (0.40 + 0.05i)|Y (mc = mMS
c = 1.2GeV),

(20)

about a 5% mass scheme ambiguity. Similarly, one observes a large residual
scale ambiguity.

This is resolved at NLO in the heavy-quark formalism. The helicity am-
plitudes

4

ie a 5% mass scheme ambiguity

separately, one has a residual scale ambiguity
of order 30% at the level of the decay amplitude

resolved in the heavy-quark
expansion (to leading power)

Beneke, Feldmann, Seidel 2001, 2004
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All input values from the meson sector together with their estimated uncertainties are
summarized in Table 2. We note that apart from the renormalization scale uncertainty and
the error in our knowledge of αs , the most important uncertain parameters can be collected
into a single factor

(55)
π2fBfK∗,a

NcMBλB,+ξa(0)
that determines the relative magnitude of the hard-scattering versus the form factor term.
Adding all errors in quadrature, this factor is uncertain by about ±50%, where the largest
error is currently from λ−1

B,+.

3.2. Exclusive effective “Wilson” coefficients

Having specified our numerical input, we now discuss the three effective “Wilson”
coefficients C7, C9,⊥(q2) and C9,‖(q2).
We begin with the quantity |C7|2 to which the decay rate of %B → %K∗γ is proportional.

In Fig. 5 we show the renormalization scale dependence of this quantity at leading and at
next-to-leading order. We also show a curve that corresponds to setting the hard-scattering
term to zero, i.e., to taking into account only the correction C

(1)
a in (15). The reason for

considering this term separately is that it should cancel the sizeable leading-order scale
dependence,while the hard scattering correction is a physically different effect that appears
first at next-to-leading order. Fig. 5 shows that this is indeed correct. The hard scattering
correction reintroduces a mild scale-dependence. The most important effect is however a
large enhancement of |C7|2 at next-to-leading order. At the scale mb = 4.6 GeV we find

(56)|C7|2NLO
/

|C7|2LO ≈ 1.78,

which corresponds to a sizeable, but not unreasonable 33% correction on the amplitude
level. The form factor and hard-scattering correction contribute about equally to this
enhancement. More precisely, the [non-]factorizable part of C

(1)
⊥ (defined in (15)) is a

−8% [+24%] correction to the real part of the amplitude, the [non-]factorizable part

Fig. 5. Renormalization scale-dependence of |C7|2 at leading (LO) and next-to-leading order (NLO).
The curve “NLO1” shows the NLO result without the spectator scattering correction.

Beneke, Feldmann, Seidel 2001



Nonlocal terms:heavy-quark expansionNon-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+
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leading-power: factorises into 
perturbative kernels, form factors, 
LCDA’s (including hard/hard-collinear 
gluon corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : further corrections to C7eff(q2) and C9eff(q2)   

      (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Kagan&Neubert 2001,
Feldmann&Matias 2002



New effect: spectator scattering

• leading power in the heavy quark limit - same as the vertex 
corrections going into C7eff, C9eff

leading-power: everything factorises into perturbative kernels, form factors, meson 
light-cone distribution amplitudes (including hard/hard-collinear gluon corrections to all 
orders)

Beneke, Feldmann, Seidel 2001
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Figure 1: Charm-loop effect in B → K(∗)!+!−: (a)-the leading-order factorizable contribution; (b)
nonfactorizale soft-gluon emission, (c),(d)-hard gluon exchange.

for the coefficients entering the LCSR are presented.

2. Light-cone dominance of the c-quark loop

The combined action of the four-quark operators O1 and O2 in (1.1) and the e.m. in-

teractions of c-quarks and leptons leads to the charm-loop effect depicted in Fig. 1. The

contribution of this mechanism to the B → K(∗)!+!− decay amplitude can be written as
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where Qc = 2/3 is the c-quark electric charge, the lepton current and photon propagator

are factored out and the hadronic transition matrix element is:
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Isolating in (2.2) the T -product of the c-quark e.m. current and the c-quark fields

entering O1 or O2, one has in both cases a generic expression:
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acL(0)
}
, (2.3)
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+ annihilation (+ “vertex 
corrections”) 

Figure 2: Non-factorizable contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross
marks the possible insertions of the virtual photon line. Diagrams that follow
from (c) and (e) by symmetry are not shown. Upper line: hard spectator scat-
tering. Lower line: diagrams involving a B → K∗ form factor (the spectator
quark line is not drawn for these diagrams).

T (f)
⊥,−(u,ω) = T (f)

‖,−(u,ω) = 0 (22)

The non-factorizable correction is obtained by computing matrix elements of four-quark
operators and the chromomagnetic dipole operator represented by diagrams (a) and (b)
in Figure 2. The projection on the meson distribution amplitudes is straightforward. In
the result we keep only the leading term in the heavy quark limit, expanding the ampli-
tude in powers of the spectator quark momentum whenever this is permitted by power
counting. In practice this means keeping all terms that have one power of the spectator
quark momentum in the denominator. Such terms arise either from the gluon propagator
that connects to the spectator quark line or from the spectator quark propagator, when
the photon is emitted from the spectator quark line. We then find:
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The leading-power term h1
�

can be calculated systematically to any order in ↵
s

in QCD factor-

ization [10]. It carries a well-defined q2 and m
c

-dependence which corresponds to keeping the ratio

m
c

/m
b

fixed in taking the heavy-quark limit. In particular, to O(↵0

s

) it amounts to the well known

substitutions C
7

! Ce↵

7

and C
9

! Ce↵

9

(q2

) in (2) and the addition of a single, CKM-suppressed

annihilation diagram.

Figure 2: Non-factorizable contributions to h�⇤
¯K⇤|H

e↵

| ¯Bi. The circled cross

marks the possible insertions of the virtual photon line. Diagrams that follow

from (c) and (e) by symmetry are not shown. Upper line: hard spectator scat-

tering. Lower line: diagrams involving a B ! K⇤
form factor (the spectator

quark line is not drawn for these diagrams).
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FIG. 3. Spectator scattering diagrams for B ! V �(⇤). The crosses denote the possible photon attachments.

Figure taken from [10].

The power-correction terms r
�

are more complicated than in the form factor case. The hadronic

weak hamiltonian comprises two operators Qc

1

, Qc

2

involving a charm quark pair, as well as four-

quark operators containing light quarks and the chromomagnetic penguin operator. Of these, the

charmed operators come with large CKM and Wilson coefficients, presumably giving the most

important contributions that we will denote by rc

�

.

A key conclusion in [56] was that while rc

�

is not negligible for � = �, 0, it respects the same

helicity hierarchy as the factorizable terms, i.e. |rc

+

| ⌧ |rc

�|, |rc

0

|. This relied on an LCSR estimate

of soft gluon emission from the charm loop, and we clarify here the precise relation to the QCD

factorisation result.

Note first that the heavy-quark limit is given by the diagrams shown in Figure 3, computed for

soft “constituents” of the B-meson and collinear ones of the K⇤, convoluted with leading-twist

light-cone distribution amplitudes. Schematically,

h
�

=

Z
1

0

du�⇤
K

(u)T (u, ↵
s

) + O(⇤/m
b

).

The internal lines in the graphs can have hard (O(m2

b

)) or hard-collinear (O(m
b

⇤))) virtuali-

ties. A Wilsonian picture is provided by soft-collinear effective theory, whereby in two matching

steps the hard and the hard-collinear degrees of freedom are integrated out, leaving a theory with

10

includes Q1c , Q2c - large Wilson coefficients



Long-distance charm loop 
•

right-handed currents beyond the SM. We have seen above that the form factor
T+ is doubly suppressed by q2/m2

B and �/mb, and V+ suppressed by �/mb, which
translates to a suppression of the positive-helicity amplitudes in the factorisable
approximation and in the absence of right-handed currents, i.e. neglecting the
hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
However, this involves models of power corrections which are not very accurate.

3.2.3 Charm loop helicity hierarchy

Within the context of LCSR, a study of charm loop e⇥ects at low q2 has been
given recently by Khodjamirian et al [20], and the analogous contributions to
B ⇧ K⇤� have been considered earlier in []. In [20], long-distance charm-loop
e⇥ects are estimated to be sizable (and with a large uncertainties); these e⇥ects
correspond in part to power corrections in QCDF. Unfortunately, the results are
only presented in numerical form and only for transversity, not helicity ampli-
tudes. Nevertheless, central values and uncertainties on these,

A⇧|cc̄(1GeV2) = . . . , A⌅|cc̄(1GeV2) = . . . , (57)

are suggestive of a suppression h+ ⌅ h�. The computation in [25] provides
directly a result for h+ at q2 = 0, which (adjusting for our normalisation conven-
tions) reads

h+(0) = . . . . (58)

The aim of this section is to argue that a hierarchy h+ ⌅ h�, h0 results, as
far as the charm loop goes, from the light-cone dominance of the amplitude at
q2 ⌅ m2

B. To this end, let us recast the strategy of [20] in terms of helicity
amplitudes, picking out the charm loop in h⇤,

h⇤|cc̄ =
1

m2
B

2

3
⇤µ⇤(⌅)

⌅
d4y eiq·y⌥M |T [(c̄�µc)(y)(Cc

1Q
c
1 + Cc

2Q
c
2)(0)]|B̄�. (59)

Next, [20] shows that the Fourier integral is dominated by the light-cone y2 ⇤ 0.
A light-cone OPE is then performed, which at the one-gluon level results in the
expression

h⇤|cc̄ = ⇤µ⇤(⌅)⌥M(k,⌅)|Õµ|B̄�, (60)

where

Õµ =

⌅
d⇧Iµ⇧�⇥(q,⇧)s̄L�

⇧⇥
⇥
⇧ � in+ ·D

2

⇤
G̃�⇥bL, (61)

with D the covariant derivative and Iµ⇧�⇥ given in [20]. The nonlocal operator
(61) is the leading term in an expansion in �2

QCD/(4m
2
c�q2), with terms involving

two and more gluon fields contributing only at higher orders [20]. It can be further
expanded in local operators,

Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⇧�⇥(q,⇧)

���
⌃=0
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Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+
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perform a “light-cone OPE”
(This is equivalent to expanding the charm 
loop, treating Λ2/(4 mc2) ~ Λ/mb )

obtain

Khodjamirian et al 2010

(a nonlocal, light-cone operator)
need estimate of 
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hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
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Next, [20] shows that the Fourier integral is dominated by the light-cone y2 ⇤ 0.
A light-cone OPE is then performed, which at the one-gluon level results in the
expression
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two and more gluon fields contributing only at higher orders [20]. It can be further
expanded in local operators,
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(which goes into HVλ)

A light-cone OPE is then performed. To leading order, this results in a local op-
erator whose matrix elements can be identified with the charm-loop contribution
to the form factor term in QCDF (ie those charm-loop e⇤ects that do not involve
the spectator quark). At the one-gluon level, one has the expression

h⇤|cc̄,LD = ⇤µ⇤(⌅) M(k,⌅)|Õµ|B̄⌦, (60)

where

Õµ =

⌅
d⇧Iµ⌃�⇥(q,⇧)s̄L�

⌃⇥
⇥
⇧ � in+ ·D

2

⇤
G̃�⇥bL, (61)

with D the covariant derivative and Iµ⌃�⇥ given in [39]. The nonlocal operator
(61) is the first subleading term in an expansion in ⇥2/(4m2

c � q2), with terms in-
volving two and more gluon fields contributing only at higher orders [39]. Eq. (60)
hence provides an approximation to the long-distance charm-loop contributions.
It can be further expanded in local operators,

Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⌃�⇥(q,⇧)

���
⌥=0

s̄L�
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⇥in+ ·D

2

⇤n

G̃�⇥bL. (62)

The result of [27] corresponds to keeping only the n = 0 term, and evaluating its
matrix element by means of a LCSR for a correlation function

i

⌅
d4y e�ip·y K⇤|[Õ(0)

µ (q)](0) j†B(y)|0⌦. (63)

Ref. [27] argued the suppression of higher terms in the local OPE by a larger
expansion parameter of order mB⇥/(4m2

c), which has been taken as (20 � 40)%
and used to justify truncating the OPE after the leading term. This numerical
value corresponds to taking ⇥ ⇤ 300�650 GeV (for MS quark masses), and should
hold up to an O(1) factor, which if large could in principle spoil the convergence
of the OPE. More seriously, the power counting itself was obtained by appealing
to inclusive B ⇧ Xs� decay, where similar matrix elements  B|b̄(q ·D)nG�⇥�b|B⌦
occur as part of power corrections to the charm loop [85,86]. (� denotes a Dirac
structure which is irrelevant to the present discussion.) There, the softness of
the B meson constituents provides one power of ⇥ in the numerator, which can
be seen via q · D ⌅ �iq · kG ⇤ mb⇥, where kG is the gluon momentum [85].
(The resulting ‘suppression’ factor is estimated as 0.6 in [86].) However, with an
energetic K⇤ in the final state as in (63) the constituents have energies O(mb),
so n+ · D ⌅ n+ · kG ⇤ mb and a scaling m2

b/(4m
2
c) of the putative expansion

parameter seems appropriate; at least, establishing a suppression requires a new
argument. We therefore will not rely on the estimate of [27] in this paper. Ref. [39]
estimates instead the full nonlocal operator matrix element from a LCSR for a
di⇤erent correlation function
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⇧ (y)Õµ(0)}|B⌦, (64)
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(61) is the first subleading term in an expansion in ⇥2/(4m2
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(The resulting ‘suppression’ factor is estimated as 0.6 in [86].) However, with an
energetic K⇤ in the final state as in (63) the constituents have energies O(mb),
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c) of the putative expansion

parameter seems appropriate; at least, establishing a suppression requires a new
argument. We therefore will not rely on the estimate of [27] in this paper. Ref. [39]
estimates instead the full nonlocal operator matrix element from a LCSR for a
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consider soft gluon (in B rest frame)

From collinear factorisation viewpoint this represents 
the endpoint region, which is known to give a power-
suppressed contribution

light-cone SR  based on                              for K* helicity amplitudes Khodjamirian et al 2010
one outcome: two tests of right-handed dipol transitions remain clean

for error estimate, introduce polynomial model in q2/(4mc2)

SJ, Martin Camalich 2012



High-q2 region (sketch)
- spectator scattering mechanism power-suppressed

- above open-charm (and perturbative-charm) thresholds

- however, for q2 >> 4mc2, OPE at amplitude level

Duality violation (≡ error beyond OPE)
- expected on general grounds
for OPE above threshold

- pronounced resonant
structure observed

- difficult to quantify uncertainty due to this

- like in low-q2, probably best to stay away from the charm 
threshold region in looking for new physics

of the resonances that are subsequently anal-
ysed, resolution e↵ects are neglected. While
the  (2S) state is narrow, the large branching
fraction means that its non-Gaussian tail is
significant and hard to model. The  (2S) con-
tamination is reduced to a negligible level by
requiring m

µ

+
µ

� > 3770MeV/c2. This dimuon
mass range is defined as the low recoil region
used in this analysis.
In order to estimate the amount of back-

ground present in the m
µ

+
µ

� spectrum, an un-
binned extended maximum likelihood fit is per-
formed to the K+µ+µ� mass distribution with-
out the B+ mass constraint. The signal shape
is taken from a mass fit to the B+!  (2S)K+

mode in data with the shape parameterised
as the sum of two Crystal Ball functions [17],
with common tail parameters, but di↵erent
widths. The Gaussian width of the two compo-
nents is increased by 5% for the fit to the low
recoil region as determined from simulation.
The low recoil region contains 1830 candidates
in the signal mass window, with a signal to
background ratio of 7.8.
The dimuon mass distribution in the low

recoil region is shown in Fig. 1. Two peaks
are visible, one at the low edge corresponding
to the expected decay  (3770)! µ+µ� and
a wide peak at a higher mass. In all fits, a
vector resonance component corresponding to
this decay is included. Several fits are made to
the distribution. The first introduces a vector
resonance with unknown parameters. Subse-
quent fits look at the compatibility of the data
with the hypothesis that the peaking structure
is due to known resonances.
The non-resonant part of the mass fits con-

tains a vector and axial vector component. Of
these, only the vector component will inter-
fere with the resonance. The probability den-
sity function (PDF) of the signal component
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Figure 1: Dimuon mass distribution of data with
fit results overlaid for the fit that includes con-
tributions from the non-resonant vector and ax-
ial vector components, and the  (3770),  (4040),
and  (4160) resonances. Interference terms are
included and the relative strong phases are left
free in the fit.

is given as

Psig / P (m
µ

+
µ

�) |A|2 f 2(m2
µ

+
µ

�) , (1)

|A|2 = |AV
nr +

X

k

ei�kAk

r |2 + |AAV
nr |2 , (2)

where AV
nr and AAV

nr are the vector and axial
vector amplitudes of the non-resonant decay.
The shape of the non-resonant signal in m

µ

+
µ

�

is driven by phase space, P (m
µ

+
µ

�), and the
form factor, f(m2

µ

+
µ

�). The parametrisation of
Ref. [18] is used to describe the dimuon mass
dependence of the form factor. This form fac-
tor parametrisation is consistent with recent
lattice calculations [19]. In the SM at low re-
coil, the ratio of the vector and axial vector
contributions to the non-resonant component is
expected to have negligible dependence on the
dimuon mass. The vector component accounts
for (45± 6)% of the di↵erential branching frac-
tion in the SM (see, for example, Ref. [20]).
This estimate of the vector component is as-
sumed in the fit.
The total vector amplitude is formed by sum-

3

Grinstein, Pirjol 2004; Beylich, Buchalla, Feldmann 2011

Beylich, Buchalla, Feldmann 2011
(Chibisov et al; Shifman 1990’s)
(Lyon, Zwicky 2013)

(Chibisov et al; Shifman 1990’s)



Conclusions
* Experimental data paints an intriguing pattern of anomalies

* In my personal view: interesting enough to be taken 
seriously (also by model builders), but not conclusive yet

* Expect/require progress from LHCb via
   - more lepton universality tests
   - more data on angular distributions; precise measurement 
of AFB zero crossing, etc

   - Bs -> mu mu (Bs* -> mu mu ?)  [also CMS]
   - do not forget about right-handed currents (electrons!)
           [-> see backup]

   - complementarity with Belle2 (electrons, inclusive decays)

* True (QCD) theory progress seems (very) hard, but at least 
we are accounting for all unknown contributions now.
Some recent conceptual advances in lattice regarding B->V 
form factors at physical point; prospects for phenomenology?



BACKUP



Optimised angular observables
=functions of the angular coefficients for which form factors drop out in 
the heavy quark limit if perturbative QCD corrections neglected.

E.g.

where

Krueger,Matias 2005; Egede et al 2008 
Becirevic, Schneider 2011
Matias, Mescia, Ramon, Virto 2012
Descotes-Genon et al 2012

Other contributions to r
�

can also be investigated. Those induced by the chromomagnetic pen-

guin operator Q
8

have been studied in the context of LCSR in [90] and [85], an their contributions

turn out to be very small. The contributions involving light-quark loops can be problematic at

low q2 since their treatment in QCDF is the dual to the one induced by light vector resonances.

However, they come always doubly CKM suppressed or multiplied by small Wilson coefficients.

A study of the impact of the duality violation (in relation to the QCDF result) was done using

vector-meson dominance in [56] and it turned out to be negligibly small in the binned angular

observables. It was also shown that ru,d,s
+

for the light quarks is also suppressed by (⇤/m
b

)

2.

For all this, we neglect the power corrections to the other terms, effectively absorbing them into

rc
�

and will treat all the corrections to r
+

suppressed by (⇤/m
b

)

2.

III. ANGULAR OBSERVABLES AND THE ANALYSIS OF THE EXPERIMENTAL DATA

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the helicity

amplitudes and has been given in [56]. Certain ratios of angular coefficients are favoured because

of their reduced sensitity to form factors. In particular, we will discuss the so-called P
(0)
i

basis

which was introduced in [44, 53]. This is an exhaustive set of observables, constructed from

ratios of the angular coefficients and engineered to cancel most of the hadronic uncertainties in the

HQ/LE limit.

In order to illustrate this and critically reexamine the residual uncertainties on those observ-

ables, we will focus on two of them, called P
1

and P 0
5

in [44, 53]. In terms of the helicity ampli-

tudes, they read:

P
1

=

�2Re(H+

V

H�⇤
V

+H+

A

H�⇤
A

)

|H+

V

|2 + |H�
V

|2 + |H+

A

|2 + |H�
A

|2 , (17)

P 0
5

=

Re[(H�
V

�H+

V

)H0⇤
A

+ (H�
A

�H+

A

)H0⇤
V

]p
(|H0

V

|2 + |H0

A

|2)(|H+

V

|2 + |H�
V

|2 + |H+

A

|2 + |H�
A

|2) (18)

where we have neglected the muon mass for clarity.

In certain approximations P
1

and P 0
5

become free of nonperturbative uncertainties. In the

HQ/LE limit and neglecting ↵
s

corrections, as well as the contributions h
�

from the hadronic

weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in

12

these limits and in the SM 5,

P
1

= 0, (19)

P 0
5

=

C
10

�
C

9,? + C
9,k
�

q
(C2

9,k + C2

10

)(C2

9,? + C2

10

)

, (20)

where [TILDEs?] ˜C
9,? = Ce↵

9

(q2) + 2mb mB
q

2 Ce↵

7

, ˜C
9,k = Ce↵

9

(q2) + 2mb E

q

2 Ce↵

7

, and the P
(0)
i

are

functions of the Wilson coefficients alone.

To do [SJ, probably]: analytic linearisation of P 0
5

in one or two power-correction parameters.

Coupled with, ideally, a plot showing it numerically (a la my LHCb / Aspen / ... plot)

Thus, the leading sources of uncertainties for the observables in the P
(0)
i

basis are due to the

presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-

tions. In particular the uncertainty stemming from the breaking of the relation V
�

(q2) = T
�

(q2) is

amplified when cancellations between contributions proportional to C
7

and C
9

are effective. As it

can be concluded from the expressions above for C
9,?,k, this is the case for P 0

5

around q2 ' 3� 5

GeV2 that is where it has a zero due to that cancellation.

By contrast, toward the low-q2 endpoint, the amplitudes are dominated by the photon pole

contributions and the uncertainties stemming from the breaking of the form factor relations are

minimized. This is especially true for the observable P
1

, which in this limit is proportional to the

form factor T
+

(q2) that receives a double suppression at low q2 as a result of it being exactly 0 at

q2 = 0. Moreover, the fact that the nonfactorizable contribution r
+

is parametrically suppressed

by (⇤/m
b

)

2 [56] makes P
1

= 0 in the SM to an excellent approximation and, as discussed below,

a very powerful probe of right-handed currents in physics BSM. [Probably should cite a couple of

papers here, also the Paris people should get some credit somewhere for defining these observables

first. Also important for your talk!!!]

[To do: 1 or 2 tables with all input values collected together - in case somebody wants to

reproduce something, for example.]

A. Statistical framework and predictions in the SM

Make clear that P
1

vs P 0
5

is independent of statistical framework, here or already above.

In the analysis of experimental data one must specify the treatment of the theoretical uncer-

tainties in the statistical framework to be used. A frequentist scheme that has been successfully
5 We will ignore in this discussion the strange quark mass which produces an effect suppressed by ms/mb in P1.
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these limits and in the SM 5,
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Coupled with, ideally, a plot showing it numerically (a la my LHCb / Aspen / ... plot)
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presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-

tions. In particular the uncertainty stemming from the breaking of the relation V
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(q2) is

amplified when cancellations between contributions proportional to C
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and C
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are effective. As it

can be concluded from the expressions above for C
9,?,k, this is the case for P 0
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GeV2 that is where it has a zero due to that cancellation.

By contrast, toward the low-q2 endpoint, the amplitudes are dominated by the photon pole

contributions and the uncertainties stemming from the breaking of the form factor relations are

minimized. This is especially true for the observable P
1

, which in this limit is proportional to the

form factor T
+

(q2) that receives a double suppression at low q2 as a result of it being exactly 0 at

q2 = 0. Moreover, the fact that the nonfactorizable contribution r
+

is parametrically suppressed

by (⇤/m
b
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2 [56] makes P
1

= 0 in the SM to an excellent approximation and, as discussed below,

a very powerful probe of right-handed currents in physics BSM. [Probably should cite a couple of

papers here, also the Paris people should get some credit somewhere for defining these observables

first. Also important for your talk!!!]

[To do: 1 or 2 tables with all input values collected together - in case somebody wants to

reproduce something, for example.]

A. Statistical framework and predictions in the SM

Make clear that P
1

vs P 0
5

is independent of statistical framework, here or already above.

In the analysis of experimental data one must specify the treatment of the theoretical uncer-

tainties in the statistical framework to be used. A frequentist scheme that has been successfully
5 We will ignore in this discussion the strange quark mass which produces an effect suppressed by ms/mb in P1.
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in SM, neglecting power corrections 
and pert. QCD corrections

Form Factors at large recoil
Heavy-quark and large-recoil (K ⇤) limit only 2 independent “soft form factors”

T+ = V+ = 0, T� = V� =
2E
mB

⇠?, T0 = V0 = S =
E

mK⇤
⇠k

Dugan et al. PLB255(1991)583, Charles et al. PRD60(1999)014001

The observable P0
5 Matias et al.’12

P0
5 =
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7

P(0)
i are sensitive to power-corrections!

Model-independent parameterization (10% p.c.’s)

Constrained by exact relations or experimental data

J. Martin Camalich (UCSD) Low q2 b ! sll and interplay with radiative 5 / 16

C7 and C9 opposite sign
destructive interference enhances vulnerability to anything that violates the large-energy form 
factor relations (or more generally underestimated errors on form facors

much less of an issue in than to P1 or P3CP  than eg in P5’ (and others)
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Thus, the leading sources of uncertainties for the observables in the P
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basis are due to the

presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-
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(q2) is

amplified when cancellations between contributions proportional to C
7

and C
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are effective. As it

can be concluded from the expressions above for C
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GeV2 that is where it has a zero due to that cancellation.

By contrast, toward the low-q2 endpoint, the amplitudes are dominated by the photon pole

contributions and the uncertainties stemming from the breaking of the form factor relations are

minimized. This is especially true for the observable P
1

, which in this limit is proportional to the

form factor T
+

(q2) that receives a double suppression at low q2 as a result of it being exactly 0 at

q2 = 0. Moreover, the fact that the nonfactorizable contribution r
+

is parametrically suppressed

by (⇤/m
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)

2 [56] makes P
1

= 0 in the SM to an excellent approximation and, as discussed below,

a very powerful probe of right-handed currents in physics BSM. [Probably should cite a couple of

papers here, also the Paris people should get some credit somewhere for defining these observables

first. Also important for your talk!!!]

[To do: 1 or 2 tables with all input values collected together - in case somebody wants to

reproduce something, for example.]
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Make clear that P
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In the analysis of experimental data one must specify the treatment of the theoretical uncer-

tainties in the statistical framework to be used. A frequentist scheme that has been successfully
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Other contributions to r
�

can also be investigated. Those induced by the chromomagnetic pen-

guin operator Q
8

have been studied in the context of LCSR in [90] and [85], an their contributions

turn out to be very small. The contributions involving light-quark loops can be problematic at

low q2 since their treatment in QCDF is the dual to the one induced by light vector resonances.

However, they come always doubly CKM suppressed or multiplied by small Wilson coefficients.

A study of the impact of the duality violation (in relation to the QCDF result) was done using

vector-meson dominance in [56] and it turned out to be negligibly small in the binned angular

observables. It was also shown that ru,d,s
+

for the light quarks is also suppressed by (⇤/m
b

)

2.

For all this, we neglect the power corrections to the other terms, effectively absorbing them into

rc
�

and will treat all the corrections to r
+

suppressed by (⇤/m
b

)

2.

III. ANGULAR OBSERVABLES AND THE ANALYSIS OF THE EXPERIMENTAL DATA

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the helicity

amplitudes and has been given in [56]. Certain ratios of angular coefficients are favoured because

of their reduced sensitity to form factors. In particular, we will discuss the so-called P
(0)
i

basis

which was introduced in [44, 53]. This is an exhaustive set of observables, constructed from

ratios of the angular coefficients and engineered to cancel most of the hadronic uncertainties in the

HQ/LE limit.

In order to illustrate this and critically reexamine the residual uncertainties on those observ-

ables, we will focus on two of them, called P
1

and P 0
5

in [44, 53]. In terms of the helicity ampli-

tudes, they read:

P
1

=

�2Re(H+
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+H+
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H�⇤
A

)
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|2 , (17)
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5

=

Re[(H�
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]p
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|2)(|H+

V
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A
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|2) (18)

where we have neglected the muon mass for clarity.

In certain approximations P
1

and P 0
5

become free of nonperturbative uncertainties. In the

HQ/LE limit and neglecting ↵
s

corrections, as well as the contributions h
�

from the hadronic

weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in

12

(Melikhov 1998)
Krueger, Matias 2002
Lunghi, Matias 2006
Becirevic, Schneider 2011
Becirevic, Kou, et al 2012

}

neglecting strong phase differences 
[tiny; take into account in numerics]
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2)C10 � V��(q

2)C 0
10

P1 ⌘ I3 + Ī3
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Optimised angular observables
=functions of the angular coefficients for which form factors drop out in 
the heavy quark limit if perturbative QCD corrections neglected.

E.g.

where

Krueger,Matias 2005; Egede et al 2008 
Becirevic, Schneider 2011
Matias, Mescia, Ramon, Virto 2012
Descotes-Genon et al 2012

Other contributions to r
�

can also be investigated. Those induced by the chromomagnetic pen-

guin operator Q
8

have been studied in the context of LCSR in [90] and [85], an their contributions

turn out to be very small. The contributions involving light-quark loops can be problematic at

low q2 since their treatment in QCDF is the dual to the one induced by light vector resonances.

However, they come always doubly CKM suppressed or multiplied by small Wilson coefficients.

A study of the impact of the duality violation (in relation to the QCDF result) was done using

vector-meson dominance in [56] and it turned out to be negligibly small in the binned angular

observables. It was also shown that ru,d,s
+

for the light quarks is also suppressed by (⇤/m
b

)

2.

For all this, we neglect the power corrections to the other terms, effectively absorbing them into

rc
�

and will treat all the corrections to r
+

suppressed by (⇤/m
b

)

2.

III. ANGULAR OBSERVABLES AND THE ANALYSIS OF THE EXPERIMENTAL DATA

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the helicity

amplitudes and has been given in [56]. Certain ratios of angular coefficients are favoured because

of their reduced sensitity to form factors. In particular, we will discuss the so-called P
(0)
i

basis

which was introduced in [44, 53]. This is an exhaustive set of observables, constructed from

ratios of the angular coefficients and engineered to cancel most of the hadronic uncertainties in the

HQ/LE limit.

In order to illustrate this and critically reexamine the residual uncertainties on those observ-

ables, we will focus on two of them, called P
1

and P 0
5

in [44, 53]. In terms of the helicity ampli-

tudes, they read:
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where we have neglected the muon mass for clarity.

In certain approximations P
1

and P 0
5

become free of nonperturbative uncertainties. In the

HQ/LE limit and neglecting ↵
s

corrections, as well as the contributions h
�

from the hadronic

weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in
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these limits and in the SM 5,
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, and the P
(0)
i

are

functions of the Wilson coefficients alone.

To do [SJ, probably]: analytic linearisation of P 0
5

in one or two power-correction parameters.

Coupled with, ideally, a plot showing it numerically (a la my LHCb / Aspen / ... plot)

Thus, the leading sources of uncertainties for the observables in the P
(0)
i

basis are due to the

presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-

tions. In particular the uncertainty stemming from the breaking of the relation V
�

(q2) = T
�

(q2) is

amplified when cancellations between contributions proportional to C
7

and C
9

are effective. As it

can be concluded from the expressions above for C
9,?,k, this is the case for P 0

5

around q2 ' 3� 5

GeV2 that is where it has a zero due to that cancellation.

By contrast, toward the low-q2 endpoint, the amplitudes are dominated by the photon pole

contributions and the uncertainties stemming from the breaking of the form factor relations are

minimized. This is especially true for the observable P
1

, which in this limit is proportional to the

form factor T
+

(q2) that receives a double suppression at low q2 as a result of it being exactly 0 at

q2 = 0. Moreover, the fact that the nonfactorizable contribution r
+

is parametrically suppressed

by (⇤/m
b

)

2 [56] makes P
1

= 0 in the SM to an excellent approximation and, as discussed below,

a very powerful probe of right-handed currents in physics BSM. [Probably should cite a couple of

papers here, also the Paris people should get some credit somewhere for defining these observables

first. Also important for your talk!!!]

[To do: 1 or 2 tables with all input values collected together - in case somebody wants to

reproduce something, for example.]

A. Statistical framework and predictions in the SM

Make clear that P
1

vs P 0
5

is independent of statistical framework, here or already above.

In the analysis of experimental data one must specify the treatment of the theoretical uncer-

tainties in the statistical framework to be used. A frequentist scheme that has been successfully
5 We will ignore in this discussion the strange quark mass which produces an effect suppressed by ms/mb in P1.
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in SM, neglecting power corrections 
and pert. QCD corrections
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form factor T
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Other contributions to r
�

can also be investigated. Those induced by the chromomagnetic pen-

guin operator Q
8

have been studied in the context of LCSR in [90] and [85], an their contributions

turn out to be very small. The contributions involving light-quark loops can be problematic at

low q2 since their treatment in QCDF is the dual to the one induced by light vector resonances.

However, they come always doubly CKM suppressed or multiplied by small Wilson coefficients.

A study of the impact of the duality violation (in relation to the QCDF result) was done using

vector-meson dominance in [56] and it turned out to be negligibly small in the binned angular

observables. It was also shown that ru,d,s
+

for the light quarks is also suppressed by (⇤/m
b

)

2.

For all this, we neglect the power corrections to the other terms, effectively absorbing them into

rc
�

and will treat all the corrections to r
+

suppressed by (⇤/m
b

)

2.

III. ANGULAR OBSERVABLES AND THE ANALYSIS OF THE EXPERIMENTAL DATA

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the helicity

amplitudes and has been given in [56]. Certain ratios of angular coefficients are favoured because

of their reduced sensitity to form factors. In particular, we will discuss the so-called P
(0)
i

basis

which was introduced in [44, 53]. This is an exhaustive set of observables, constructed from

ratios of the angular coefficients and engineered to cancel most of the hadronic uncertainties in the

HQ/LE limit.

In order to illustrate this and critically reexamine the residual uncertainties on those observ-

ables, we will focus on two of them, called P
1

and P 0
5

in [44, 53]. In terms of the helicity ampli-

tudes, they read:

P
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=

�2Re(H+
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where we have neglected the muon mass for clarity.

In certain approximations P
1

and P 0
5

become free of nonperturbative uncertainties. In the

HQ/LE limit and neglecting ↵
s

corrections, as well as the contributions h
�

from the hadronic

weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in

12

(Melikhov 1998)
Krueger, Matias 2002
Lunghi, Matias 2006
Becirevic, Schneider 2011
Becirevic, Kou, et al 2012
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neglecting strong phase differences 
[tiny; take into account in numerics]
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Two approximate null tests of the SM

What are the leading corrections?



RH current probes
Extending to BSM Wilson coefficients, have

- double suppression

- extra suppression of LD contribution to HV+ (model by effective helicity-
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Helicity hierarchy survives power corrections
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turn out to be very small. The contributions involving light-quark loops can be problematic at

low q2 since their treatment in QCDF is the dual to the one induced by light vector resonances.

However, they come always doubly CKM suppressed or multiplied by small Wilson coefficients.

A study of the impact of the duality violation (in relation to the QCDF result) was done using

vector-meson dominance in [56] and it turned out to be negligibly small in the binned angular

observables. It was also shown that ru,d,s
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for the light quarks is also suppressed by (⇤/m
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)
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For all this, we neglect the power corrections to the other terms, effectively absorbing them into
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The q2-dependent angular distribution (summed over lepton spins) is quadratic in the helicity

amplitudes and has been given in [56]. Certain ratios of angular coefficients are favoured because

of their reduced sensitity to form factors. In particular, we will discuss the so-called P
(0)
i

basis

which was introduced in [44, 53]. This is an exhaustive set of observables, constructed from

ratios of the angular coefficients and engineered to cancel most of the hadronic uncertainties in the

HQ/LE limit.

In order to illustrate this and critically reexamine the residual uncertainties on those observ-

ables, we will focus on two of them, called P
1

and P 0
5

in [44, 53]. In terms of the helicity ampli-

tudes, they read:
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where we have neglected the muon mass for clarity.

In certain approximations P
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5

become free of nonperturbative uncertainties. In the

HQ/LE limit and neglecting ↵
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corrections, as well as the contributions h
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from the hadronic

weak Hamiltonian, the � = + helicity amplitudes vanish and V
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(q2). As a result, in
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2(I2s + Ī2s)
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close to q2 = 0 (photon 
pole dominance)

J
H
E
P
0
5
(
2
0
1
3
)
0
4
3

not change the structure or infrared safety of (3.4), i.e. factorization can be proven to all

orders [83]. In particular, the vanishing of T
+

and V
+

at leading power is an all-orders

result [21, 84], which looks this simple only in the helicity basis. The O(↵2

s

) contributions

have been calculated in [84–87], and their numerical impact was found to be small, mainly

reducing the residual (unphysical) scale dependence.

Thus, in the heavy-quark/large-recoil limit, the form factors T
+

and V
+

exactly vanish.

Combining (3.1) and (3.4), we have at low q2

T
+

(q2) = O(q2/m2

B

)⇥O(⇤/m
b

), (3.8)

V
+

(q2) = O(⇤/m
b

). (3.9)

On the other hand, T
0

and V
0

are not suppressed, and are independent of any hadronic

information related to the transversal polarizations of the vector meson. Notice also that,

with our choice of soft form factors, the vector form factor V , and hence V�, has a purely

residual (higher-order) scale dependence µ at any given order of perturbation theory, from

the factorization into the scale-dependent ⇠? and a scale-dependent perturbative factor.

One can explicitly check that this produces a relative change in the form factor of no more

than a 1.5% in the range m
b

/2  µ  2m
b

.

3.1.2 Numerical values of the B ! K⇤ soft form factors

Although the symmetry relations reduce (at leading power) the number of independent non-

perturbative functions, for a quantitative treatment one still has to compute the soft form

factors by a nonperturbative method and estimate (or calculate) the power corrections.

Sum rules formulated on the light cone (LCSR) are customarily used in exclusive B decays

to obtain numerical values of the form factors in the large-recoil domain [47, 70, 78]. Other

approaches that have been used to calculate the form factors in this regime include local

QCD sum rules (QCDSR) [88] and (truncated) Dyson-Schwinger equations (DSE) [89]. We

list in table 1 the results on the B ! K⇤ form factors at q2 = 0 and in the transversity

basis for the di↵erent calculations considered in this paper. The central values of most

of the form factors are quite similar, except some (prominently A
0

) for which di↵erent

methods disagree.

A well known issue between the generic results of LCSR calculations (e.g. those of

ref. [78]), QCD factorization, and the SM value of the Wilson coe�cient C
7

is that they lead

to a branching fraction of the decay B ! K⇤� that is larger than the experimental value.

Given that C
7

is constrained to be close to its SM value by the inclusive B ! X
s

� decay

rate (at least when assuming C 0
7

= 0 and C
7

real), it is often assumed that this discrepancy

is due to a systematic error in the LCSR model which produces an overestimation in the

value of the relevant form factor T
1

at q2 = 0 [24]. A possible solution to this problem is to

re-scale the form factors such that T
1

(0), in combination with the SM value for C
7

, lead to

the experimental branching fraction of the radiative decay [40]. Although this procedure

discards in part the sensitivity of the B ! K⇤`+`� decay rate to new physics, it does not

a↵ect any physical information extracted from asymmetries or ratios, which are, indeed,

the most interesting observables in the semileptonic decay [40].
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Power corrections: analytical
Compare

and

Further notice that aT+ vanishes as q2->0,  h+ helicity suppressed [will 
show], and the other three terms lacks the photon pole.

Hence P1 much cleaner than P5’, especially at very low q2

SJ,  Martin Camalich 1412.3183

weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in

these limits and in the SM 5,

P
1

= 0, (23)

P 0
5

=

Re[C⇤
10

C
9,? + C⇤

9,kC10

]

p
(|C

9,k|2 + |C
10

|2)(|C
9,?|2 + |C

10

|2) , (24)

where C
9,? = Ce↵

9

(q2) + 2mb mB
q

2 Ce↵

7

, C
9,k = Ce↵

9

(q2) + 2mb
mB

Ce↵

7

, and the P (0)
i

are functions of the

Wilson coefficients alone.

Thus, the leading sources of uncertainties for the observables in the P (0)
i

basis are due to the

presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-

tions. To see this explicitly, note that

P 0
5

= P 0
5

|1
 
1 +

a
V� � a

T�

⇠?

m
B

|~k|
m2

B

q2
Ce↵

7

C
9,?C

9,k � C2

10

(C2

9,? + C2

10

)(C
9,? + C

9,k)

+

a
V0 � a

T0

⇠k
2Ce↵

7

C
9,?C

9,k � C2

10

(C2

9,k + C2

10

)(C
9,? + C

9,k)

+ 8⇡2

˜h�

⇠?

m
B

|~k|
m2

B

q2
C

9,?C
9,k � C2

10

C
9,? + C

9,k
+ further terms

!
+O(⇤

2/m2

B

), (25)

where for simplicity we have assumed real Wilson coefficients, ˜h
+

denotes the nonlocal term h
�

with its leading term removed (absorbed into Ce↵

9

), and we have neglected the difference between

m
b

and m
B

as a higher-order effect. We see in in the second term on the first line the presence of

the power correction combination a
V� � a

T� . This is invariant under change of soft form factor

scheme [cf. (9)] – in particular it does not matter whether V� or T� is identified with ⇠?, implying

a
V� = 0 or a

T� = 0, respectively. Similarly, power corrections to the helicity-zero form factors

enter only in the combination (a
V0 - a

T0) (second line). Both can be understood by observing

that form factors cancel out of P 0
5

completely if Ce↵

7

, the � = + amplitudes, and nonfactorizable

corrections are all neglected. As a result, form factor uncertainties enter only through interference

of the tensor and vector form factors, and of form factors and nonfactorizable corrections. This

interference is most important if Ce↵

7

and Ce↵

9

(q2) are comparable, as happens in particular around

the zero-crossing of P 0
5

. The term displayed on the last line involves nonfactorizable corrections.

All three terms demonstrate how the soft form factors with their associated uncertainties re-enter

at subleading power. The full expression is quite lengthy and depends on all power-correction

5 We will ignore in this discussion the strange quark mass which produces an effect suppressed by ms/mb in P1.

16

parameters and the three nonlocal terms. A similar sensitivity to power corrections occurs in most

of the other angular coefficients, and in the observables in the P (0)
i

basis built from them. This

includes the locations of the zero-crossings of these observables.

In striking contrast, the O(⇤/m
B

) power corrections to P
1

take the simple form

P
1

=

1

C2

9,? + C2

10

m
B

|~k|

 
� a

T+

⇠?

2m2

B

q2
Ce↵

7

C
9,? � a

V+

⇠?
(C

9,?C
e↵

9

+ C2

10

)� b
T+

⇠?
2Ce↵

7

C
9,?

�b
V+

⇠?

q2

m2

B

(C
9,?C

e↵

9

+ C2

10

) + 16⇡2

h
+

⇠?

m2

B

q2
C

9,?

!
+O(⇤

2/m2

B

). (26)

Apart from depending on only one soft form factor and fewer power-correction and non-local

parameters, these terms suffer further suppression: a
T+ vanishes exactly as discussed inII A 1, the

next three terms are suppressed by a power of q2/m2

B

relative to the denominator at small q2, and

h
+

has an extra power suppression as discussed in the previous section. As a result, P
1

vanishes

like O(⇤

2/m2

B

),O(Ce↵

9

/Ce↵

7

⇥q2/m2

B

⇥⇤/m
B

) at small q2 in the SM. By contrast, in the presence

of non-zero C 0
7

it is order one. Analogous is the case of the CP-asymmetry PCP

3

[20, 33], which

at low q2 cleanly probes a BSM weak phase in C 0
7

.

A. Statistical framework and predictions in the SM

In the analysis of experimental data one must specify the treatment of the theoretical uncer-

tainties in the statistical framework to be used. A frequentist scheme that has been successfully

applied to the analysis of the CKM unitarity triangle by the CKMfitter collaboration is the range

fit (or Rfit) method [86]. In this approach, the �2 is first constructed in the usual way, based on a

vector of experimentally measured observables ~x with experimental uncertainty ~�. The theoretical

determination of the observables depends on two types of variables: (i) A set ~C of short-distance

Wilson coefficients of the effective weak Hamiltonian; (ii) hadronic parameters, ~y that can be de-

termined using various nonperturbative methods with some systematic uncertainty ~�. A piece is

then added to the �2 that does not contribute unless any of the components y
i

leaves the range

determined by its uncertainty, �
i

. More explicitly:

�2

(

~C, ~y) =

8
<

:

P
i

(

xi�x

th
i (

~

C,~y )

)

2

�

2
i

, if y
k

2 [ȳ
k

� �
k

, ȳ
k

+ �
k

] 8k
1, otherwise

. (27)
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(truncated after 3 out of 11 independent power-correction terms!)
also, dependence on soft form factors reappears at PC level

(complete expression)



Status/prospects

• Left: assuming                      for muons and electrons, no theory errors

• Middle: Profile likelihood for 2014 data (1sigma and 95% CL)

• Right: post-Moriond fit including new muon data 

• excellent sensitivity to right-handed currents remains with conservative treatment of 
QCD uncertainties
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7
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Left: Ideal plot assuming �Pi = 0.25 for µ and e modes (1 and 2�)

Right: Profile likelihood to current data (slight tension driven by Aµ
9 !)

B ! K ⇤ {mumu, ee} provide excellent theoretically clean window on C0
7

With radiative they form a complete system to determine C7 and C0
7

J. Martin Camalich (UCSD) Low q2 b ! sll and interplay with radiative 11 / 16
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FIG. 6. Bounds in the C 0
7

plane. Left panel: Ideal 68% and 95% contour plots for the central values

of the theoretical parameters. The diagonal band corresponds to the S
K

⇤
�

measurement and the vertical

and horizontal ones to hypothetical null measurements of P
1

and PCP

3

, respectively, with an assumed

experimental precision of 0.1. The green and black lines are for the muonic mode and the brown and orange

for the electronic one. Right panel: Current bounds at 68% and 95% CL in the C 0
7

plane using all the current

data of B ! K⇤µ+µ� in the lower bins [0.1, 2] and [2, 4.3] GeV2 and of B ! K⇤� and B ! X
s

�. We

use the profile likelihood method and set all other Wilson coefficients to their SM values.

We conclude that P
1

and PCP

3

conform, in combination with S
K

⇤
�

and B(B ! X
s

�), and

neglecting NP contributions to the phase of the B
d

mixing amplitude, a basis of clean observables

that completely determine C
7

and C 0
7

from experiment, with the simple expressions given in [98,

99] being protected from QCD uncertainties to a high degree.

With the small theoretical uncertainties in the SM predictions, one expects that the determina-

tion of these Wilson coefficients will be dominated by the experimental errors. In this regard, and

as shown in the left-hand panel of Fig. 6, the measurements provided by the electronic mode are

very promising. It is also worth pointing out in the right-hand panel of Fig. 6 the small discrep-

ancy with the SM in the imaginary part that is driven by the current measurement of the angular

observable A
9

in the muonic mode. 6

At higher q2, P
1

and PCP

3

are also affected by O(⇤/m
B

) power corrections induced, in this

case, chiefly by the vector form factor V
+

(q2). However, given their specific sensitivity to right-

handed quark currents they could also serve to probe C 0
9

and C 0
10

, especially if these are as large
6 Since this discussion is meant to be an illustration of the impact of the approach of this paper in the phenomenology,

we obtained our experimental PCP
3 from the measured A9 and FL via PCP

3 = A9/(1 � FL), propagating errors

quadratically and ignoring experimental correlations.
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awaiting update with 
2015 electron and 
muon data!
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Light-quark contributions
Operators without charm have strong charm or CKM suppression; 
power corrections should be negligible.

However, they generate (mild) resonance structure even below the 
charm threshold, presumably “duality violation”
Presumably ρ,ω,φ most important; use vector meson dominance
supplemented by heavy-quark limit B➔VK* amplitudes

estimate uncertainty from difference between VMD model and the 
subset of heavy-quark limit diagrams corresponding to 
intermediate V states.

Helicity hierarchies in hadronic B decays prevent large 
uncertainties in HV+ from this source, too.
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Figure 4. Graphical representation of the VMD model. The filled bulb represents the B̄ � V K̄�

decay vertex, as obtained in QCD factorization, the solid bulb fV , as obtained from experiment,
and the double lines resonance propagators, with the cross indicating the multi-particle dressing of
the respective pole.

In this paper we use a model to estimate the contribution of the light hadronic degrees

of freedom in the low-q2 region. We start by making a factorization approximation of the

correlation function eq. (3.30), using a basis of hadronic states |P (0)⌅ and |P ⌅(x)⌅,

ãhad, lqµ =

⇥
d4x e�iq·x

�

P,P ⇤

⇤0|jem,lq
µ (x)|P ⌅⌅⇤P ⌅(x)|P (0)⌅⇤K̄⇤P |Hhad

e� (0)|B̄⌅, (3.31)

where the sums include further integrations for multi-particle states. We next assume that

these sums are saturated by the lightest neutral vector resonances V = �(770), ⌅(782)

and ⇥(1020), i.e. vector meson dominance (VMD). This hypothesis has proven very fruit-

ful in modelling the electromagnetic structure of light hadrons at low energies. It finds

microscopic justification in the large Nc limit of QCD [105] and it has been successfully

implemented to connect the short-range part of the low-energy interactions of pions with

QCD [98, 99]. (For a compilation of phenomenological applications of the model in the

weak decays of mesons see ref. [106].) In the VMD, the first factor in the r.h.s. of eq. (3.31)

is a semileptonic decay constant, fV , the second the vector-meson propagator and the third

a B̄ � V K̄⇤ decay amplitude. Finally, we (partially) take into account the e�ect of the

continuum of multi-particle hadronic states by dressing the poles of the resonance by their

(o�-shell) width. All in all, the estimate for the hadronic contribution at low q2 can be

pictured as in figure 4.

In order to carry out the computation, it is convenient to use an e�ective Lagrangian

containing fields which serve as interpolators for the vector resonances. We choose the

anti-symmetric representation advocated in refs. [98, 99] for applications in ⇤PT. Other

Lagrangian formulations consistent with chiral symmetry and electromagnetic gauge in-

variance8 are equivalent to this one, once consistency with QCD asymptotic behavior of

2-point spectral functions is demanded [99]. We address the reader to appendix B for the

details and conventions used in the model.

As for the B̄ � V K̄⇤ decay amplitude, it is natural, in the present context, to use

the QCD factorization calculation reported in ref. [108]. In fact, as already discussed

in [23], there is a one-to-one correspondence between a subclass of diagrams in the QCDF

calculation of B̄ � K̄⇤↵+↵� and of the diagrams appearing in the QCDF calculation for

8Notice that in a previous VMD analysis [107] of the vector-meson contribution to the B � K⇥⇤+⇤�

decay, electromagnetic gauge and non-gauge invariant Lagrangians were considered in the same footing

and large di�erences between the two approaches have been reported at low q2. In this paper we work

exclusively with approaches consistent with electromagnetic gauge symmetry (and QCD, as stated in the

main text).
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In this paper we use a model to estimate the contribution of the light hadronic degrees

of freedom in the low-q2 region. We start by making a factorization approximation of the

correlation function eq. (3.30), using a basis of hadronic states |P (0)⌅ and |P ⌅(x)⌅,

ãhad, lqµ =

⇥
d4x e�iq·x

�

P,P ⇤

⇤0|jem,lq
µ (x)|P ⌅⌅⇤P ⌅(x)|P (0)⌅⇤K̄⇤P |Hhad

e� (0)|B̄⌅, (3.31)

where the sums include further integrations for multi-particle states. We next assume that

these sums are saturated by the lightest neutral vector resonances V = �(770), ⌅(782)

and ⇥(1020), i.e. vector meson dominance (VMD). This hypothesis has proven very fruit-

ful in modelling the electromagnetic structure of light hadrons at low energies. It finds

microscopic justification in the large Nc limit of QCD [105] and it has been successfully

implemented to connect the short-range part of the low-energy interactions of pions with

QCD [98, 99]. (For a compilation of phenomenological applications of the model in the

weak decays of mesons see ref. [106].) In the VMD, the first factor in the r.h.s. of eq. (3.31)

is a semileptonic decay constant, fV , the second the vector-meson propagator and the third

a B̄ � V K̄⇤ decay amplitude. Finally, we (partially) take into account the e�ect of the

continuum of multi-particle hadronic states by dressing the poles of the resonance by their

(o�-shell) width. All in all, the estimate for the hadronic contribution at low q2 can be

pictured as in figure 4.

In order to carry out the computation, it is convenient to use an e�ective Lagrangian

containing fields which serve as interpolators for the vector resonances. We choose the

anti-symmetric representation advocated in refs. [98, 99] for applications in ⇤PT. Other

Lagrangian formulations consistent with chiral symmetry and electromagnetic gauge in-

variance8 are equivalent to this one, once consistency with QCD asymptotic behavior of

2-point spectral functions is demanded [99]. We address the reader to appendix B for the

details and conventions used in the model.

As for the B̄ � V K̄⇤ decay amplitude, it is natural, in the present context, to use

the QCD factorization calculation reported in ref. [108]. In fact, as already discussed

in [23], there is a one-to-one correspondence between a subclass of diagrams in the QCDF

calculation of B̄ � K̄⇤↵+↵� and of the diagrams appearing in the QCDF calculation for

8Notice that in a previous VMD analysis [107] of the vector-meson contribution to the B � K⇥⇤+⇤�

decay, electromagnetic gauge and non-gauge invariant Lagrangians were considered in the same footing

and large di�erences between the two approaches have been reported at low q2. In this paper we work

exclusively with approaches consistent with electromagnetic gauge symmetry (and QCD, as stated in the
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