
Nov 10, 2015

Analysis Frameworks

Steve Farrell

Software Technical Interchange Meeting
Lawrence Berkeley National Lab

Introduction

• Good progress is being made on AthenaMT, in a wide
range of areas
• People seem to be aware of the magnitude and

importance of the work
• But of course it’s not all about trigger/reco/simulation

• Quality of analysis software is extremely important for
ATLAS’s scientific mission

• The big questions:
• How can we continue to run analysis software effectively

alongside/within AthenaMT?
• How can we leverage new features/capabilities to

improve our analysis software for the future?

2

Background

• The FFReq analysis addendum described some requirements of the framework for
analysis
• https://cds.cern.ch/record/2013708?

• Its main points:
• Framework components should be instantiable outside the framework
• Components/tools should be configurable via a standardized file format like JSON
• Framework should support multiple submission backends

• This discussion today continues the one from the ATLAS frameworks workshop in
July at CERN
• https://indico.cern.ch/event/394278/session/0/contribution/7/attachments/

789344/1081914/fraat_statusReport3.pdf
• Topics to discuss

• Analysis framework landscape
• Dual-use tools in the future framework
• Extending the dual-use concept
• Concurrency in analysis

3

https://cds.cern.ch/record/2013708?
https://indico.cern.ch/event/394278/session/0/contribution/7/attachments/789344/1081914/fraat_statusReport3.pdf

Frameworks used for analysis

• AthAnalysisBase
• AnalysisTop

• common executable in RootCore
• application steered completely by config file

• HWW xAOD framework
• 2 stages: PxAOD production in Athena, analysis in RootCore

• CxAOD framework
• RootCore framework produces CxAOD files
• Analyzed with a toolkit (I think..?)

• xTau Framework
• SUSYTools

• a super-tool with several high-level methods (e.g. fillElectron)
• QuickAna

• a super-tool toolkit and tool scheduler
4

Dual-use tools in the future framework

• Used extensively in analysis to do all kinds of work
• Object corrections, selections, weights, corresponding

systematics
• Calculation of MET, overlap removal, taggers

• The dual-use tool software layer was very useful for CP
groups providing recommendations via tools, but also useful
for analysis tools/frameworks
• Both QuickAna and SUSYTools work in either RootCore or

AthAnalysisBase
• Some frameworks spread across both RootCore/

AthAnalysisBase; able to move pieces around
• Luckily, the AthenaMT infrastructure changes shouldn’t have

a huge effect on our ability to maintain this capability
5

Expanding the dual-use toolkit

• Many folks are interested in the idea of extending the dual-use concept to other
types of framework components and services

• All “frameworks” have to tackle the same kinds of problems
• Component management
• Scheduling
• Event data management
• Configuration
• I/O

• Can we develop more common solutions to tackle these across different analysis
codes?
• Share design patterns, principles, implementations

• Possible gains
• Framework becomes more flexible/extensible in general (not just for analysis)

• There are multiple ways to do this
• Expand the current dual-use pattern to other component types
• Make components useable outside the framework

6

Directly instantiable framework components

• Another requirement from the FFReqAD: framework
components should be directly instantiable
• This way we can use them outside of the full framework,

standalone or in another framework
• Difficult/impossible to do currently because of framework

dependencies
• This opens the door to interesting design questions about

Athena
• Is it possible to better decouple the framework elements?
• Should Athena become more like a toolkit?
• Would we stand to gain general improved flexibility?

• Algorithms: a good possible use-case?

7

Dual-use component pattern

• Another way to do things: apply the dual-use tool design pattern to
other components like services and algorithms
• Interfaces and base classes with compiler switches to swap out the

Athena dependencies
• What would a dual-use algorithm look like?

• IAsgAlg interface and AsgAlg base class
• Replacements for the Athena dependencies

• e.g., we already have SgTEvent
• probably need a standalone version of the VarHandles

• What could we do with a dual-use algorithm?
• Run it in a non-Athena, or even ROOT-based framework
• Maybe merge with EventLoop Algorithm
• Integration with PROOF, etc.

• Would this pattern also work for other types of components?
8

Configuration

• Many frameworks and analysis codes use some kind of
configuration file to set properties on tools
• Some CP tools even rely on them if the configuration is

complex enough
• Formats vary from custom formats to TEnv and more

• One item from the FFReqAD was that the dual-use tools (and
even the larger framework) should support some kind of config
file in a format like JSON
• Could allow to harmonize these cases across all tools with a

common format and parser
• Could be used as a layer in the standard framework

configuration, generated from current job options and python
configurables.

• Or just use alternative/extended version of the JO svc?
9

What else could be useful?

• If we’re talking about making the Athena framework more like a
toolkit, it’s also useful to take about making our ASG toolkit more
like a framework
• Analyzers clearly like to use some kind of framework (just not

Athena…?)
• What about component management?

• Currently no uniform factory method for implementing tools,
etc. outside of Athena

• FFReqAD says that algorithms should be able to directly
instantiate their private tools outside of the framework

• What about configuration management?
• Adding support for simple config files is one thing, but some

JobOptionsSvc-like infrastructure to handle it and apply it to
tools could also be useful

10

Event processing and concurrency

• FFReqAD: framework should be backend agnostic
• job submission is separate from framework
• support submission to PROOF

• conflicting requirements?
• New types of computing resources may be possible for

running analysis
• Cori phase 1 with the burst buffer
• Event-service-like processing

11

Concurrency

• I don’t expect multi-threading to be necessary for analysis
• Multi-process is still the de-facto way to parallelize analysis code
• But we can still keep doors open, considering the amount of work it takes

to implement solutions
• Whatever code we write that is supposed to work in Athena should at least

run safely in AthenaMT
• I.e., things should be thread-safe
• Systematics tools actually hold state which is updated frequently in the

event loop
• As long as systematics tools are private tools, things should be thread

safe in the AthenaMT event loop
• Need to add some protection to the SystematicRegistry

• Thread safety outside of this private-tool pattern could still be an issue
• But I’m doubtful we’ll be recommended analyzers to implement their own

implementation of multi-threading

12

QuickAna implementations

• In QuickAna, as in other codes, we have our own custom solutions to
these problems
• Some are still in (slow) development

• Algorithms and scheduling
• Our algorithms are really just AsgTools with some extra machinery
• Our scheduler resolves data dependencies in a way that’s not too

dissimilar to Athena
• A little more systematic-oriented, though
• Also, scheduling is fixed early on; not dynamic

• Event processing
• QuickAna can be wrapped in an Athena algorithm or in an EventLoop

algorithm, which allows us to submit to respective supported backends
• We can even now run QuickAna on Edison @ NERSC, in preparation

for running on Cori Phase 1

13

QuickAna implementations

• Component management and configuration (work in progress)
• A ConfigSvc takes the place of the JobOptionsSvc, holding

properties mapped by tool names
• Currently can be filled directly, but we envision filling it with a

config file
• An AsgToolSvc handles the factory creation of the tools, using the

ROOT dictionary
• Also configures/initializes the tool automatically via the ConfigSvc

• Once integrated with a smarter ToolHandle, this becomes quite
similar to the infrastructure in Athena
• An “algorithm” retrieves its private tool; the handle queries the

AsgToolSvc which will create it on-the-fly and configure it via the
job options in the ConfigSvc

• We’d be happy to have more general implementations of these
solutions that we can simply adopt

14

