Scientific Data Stores Outside HEP

Wahid Bhimji (Contributions from Joaquin Correa, Lisa Gerhardt and the NERSC Data and Analytics Services Group)

Atlas Software TIM Nov 9th, 2015

NERSC is the Production HPC & Data Facility for DOE Office of Science Research

Office of Science

Largest funder of physical science research in U.S.

Bio Energy, Environment

Computing

Materials, Chemistry, Geophysics

Particle Physics, Astrophysics

Nuclear Physics

Fusion Energy, Plasma Physics

We support a broad user base

Science

- 5000 users, and we typically add 350 per year
- Geographically distributed worldwide

- 3 -

NERSC Systems

NERSC Data and Analytics

• DAS group - relatively new at NERSC (1.5 yrs) - supports data-intensive science across DoE science

NERSC Data and Analytics Stack

Capabilities	F	Processing		Storage/ Management			naly uali	/tics/ isation	,	Access			Transfer		
Tools	F	ïreworks/ Swift	R	python/ 2/ ROOT	0 Fij	MERO/ i/Matlab		Vi Para	sit/ aview	N	IEWT	(GridFtp		
Services	Ę	BDAS/ SPARK		thon/ tudio	HDF5/ NetCDF			SciDB/Mong Postgres/My		ngo[1yS(DB QL	G	lobus		
Systems	Compu Nodes	te Interac Node	tive es	Burst Buffer	Par Filesy	allel /stem	G	ilobal FS	Databa Serve	ase rs	Scier Gatev	nce vays	Data Transfer Nodes		

Office of ENERGY Office of Science

HDF5

- HDF5 (Hierarchical Data Format v5) probably the most widely-used / general purpose IO library:
 - Data model allows for complex data objects.
 - Portable file format across machines.
 - Software libraries; performance features and tools.
- Hierarchical: groups and datasets like folders and files
- Datasets: Have *headers* (that describe type, dimensionality, and layout) and *data array*
- Attribute: Name, Value pairs
- Parallel HDF5 supports MPI and MPI-I/O
 - Write one shared file in parallel
 - Using collective buffering parallel I/O <u>can</u> <u>reach file-per-process performance</u>

- Widespread use of HDF5 in large-scale massively parallel simulations
- Also allows for statistical analysis on large datasets
 - E.g Clustering of trillion particle simulation (Single 24TB HDF5 file) in 30 minutes (on 100k cores) [<u>BD-CATS</u>]
 - And k-Nearest Neighbors (KNN) on TB-sized O(100 billion records) simulation and experimental datasets in < 1 min [submitted to ICLR]
- And HEP-like experimental pipelines: e.g SPOT suite for Advanced Light Source

SciDB

- Open-source Array Database- supported by Paradigm4
- Shared nothing: scalable to 1000s of processors and petabytes of data
- SQL-like Array Query Language and friendlier Array Functional Language
- Optimised functions for e.g. Stats and Linear Algebra (ScaLAPACK),
- Extensible with User Defined Functions

Office of

Science

DEPARTMENT OF

SciDB Use Case - LUX

<u>Gerhardt et. al.</u> <u>Accelerating Scientific</u> <u>Analysis with SciDB</u> (CHEP 2015)

- Signal is scintillation photon (S1) followed by ionization electron (S2)
- In SciDB stored as an EventArray and PulseArray
- To identify signal can:
 - Filter these arrays to find EventArray with 2 pulses and S1 and S2 within a 'cut' on photon counts
 - –Then 'cross_join' to form table of events and properties
- Process 83m events (LUX 2013 Data) in 90s
 - -On NERSC test-bed: 16 8-core Intel Xeon X5550 (2.67 GHz) nodes, 24 GB of RAM
 - Fast and less cumbersome than running on ~1m files in 10+TB Dataset

SciHDF5

Combine benefits of

- high-level query language and optimized execution engine
- Standard file format for data exchange

S. Floratos, S. Blanas, S. Byna, B. Dong, Prabhat, K. Wu, Ohio State University Sand LBL

- Dataset: 10GB array, random data
- Storage: 8MB stripe size, across 16 OSTs
- SciDB: 8 SciDB instances, 1 node, 8MB chunks
- Aggregation query: average of the entire array
- High-selectivity query: sum a 1000 x 1000 array subset
- Aproaching native SciDB performance

DEPARTMENT OF

• Currently prototyping idea, work needed to deliver in production.

Office of

Science

, , , ,

We currently deploy separate Compute Intensive and Data Intensive Systems

Compute Intensive

Data Intensive

 Cori will cater for HPC and HTC, support existing users of HPC (e.g. Edison) and HTC (e.g. Carver) but also enable new data workflows

 First machine in new Computational Research and Theory (CRT) building

Cori Overview

 Phase 2 (coming mid-2016) - over 9,300 '<u>Knights Landing</u>' compute nodes - See talk by Katie Antypas tomorrow

Phase 1 (installed now):

- 'Data partition'
- 1630 Compute Nodes
- Two Haswell processors/node,
 - -16 cores/processor at 2.3 GHz

—128 GB DDR4 2133 Mhz memory/ node(some 512 /768 GB)
—Cray Aries high-speed "dragonfly" topology interconnect
—High-performance networking external to the system too
—SLURM batch system – more queues for 'realtime' (e.g. for experiment processing), 'shared' (e.g. serial), killable

•Lustre File system (also installed now): 28 PB capacity, >700 GB/sec peak performance

NE RSC

NVRAM based – 'Burst Buffer'

- ~1.5PB capacity, ~1.5TB/s for full Cori System
- Half with Phase 1 (144 nodes with 2x3.2TB SSD modules
- Available via SLURM batch system integration with Cray 'Data Warp' Software

ENERGY Office of Science

IO improvements: high bandwidth reads and writes, e.g. checkpoint/restart; high IOP/s, e.g. non-sequential table lookup; out-of-core applications

Workflow performance improvements: coupling applications, using the BB as interim storage; Optimizing node usage by changing node concurrency part way through a workflow (using a persistent BB reservation)

Analysis and Visualization: Insitu / in-transit; Interactive

(using a persistent BB

reservation)

Burst Buffer – early user program

Project	DoE office	BB data features
Nyx/Boxlib cosmology simulations (<i>Ann Almgren, LBNL</i>)	HEP	I/O bandwidth with BB; checkpointing; workflow application coupling; in-situ analysis.
Phoenix: 3D atmosphere simulator for supernovae (<i>Eddie Baron, U. Oklahoma</i>)	HEP	I/O bandwidth with BB; staging intermediate files; workflow application coupling; checkpointing.
Chombo-Crunch + Visit for carbon sequestration (<i>David Trebotich, LBNL</i>)	BES	I/O bandwidth with BB; in-situ analysis/visualization using BB; workflow application coupling.
Sigma/UniFam/Sipros Bioinformatics codes (Chongle Pan, ORNL)	BER	Staging intermediate files; high IOPs; checkpointing; fast reads.
XGC1 for plasma simulation (Scott Klasky, ORNL)	Fusion	I/O bandwidth with BB; intermediate file I/O; checkpointing.
PSANA for LCLS (Amadeo Perazzo,	BES/BER	Staging data with BB; workflow management; in-transit analysis.

Burst Buffer - performance

- How ATLAS once was: (CHEP Taipei 2010)
 - -Old unordered AODs
 - –SATA HDD tops out at 100-200 IOPS
 - –Various improvements to ATLAS file layout made SSDs not cost effective then
- NERSC Burst Buffer
 - Each 3.2 TB module has around 80k IOPS and we have 288 of those
 - -E.g. 4.5k processes write/read of 4.5 TB file in 4k transfers with 1G seek: O(10M) total IOPS

- Other science domains face similar challenges to HEP and employ similar solutions
 But with different tools
- •HEP has been at the forefront of science data management for a while
 - -Other domains are not using (or able to use or even aware of) many of its tools
 - -They have a variety of database, I/O, storage solutions touched on a few here
- Some more technical interchange is desirable

Extra Slides

Burst Buffer Software Development Timeline

Phase 3

• BB-node functionality: In Transit, filtering

Phase 2

Usability enhancements: Caching mode

Phase 1

- I/O acceleration: Striping, reserved I/O bandwidth
- Job launch integration: allocation of space per job or persistently
- Administrative functionality

Phase 0

- Static mapping of compute to BB node
- User responsible for migration of data

Outline

- Introduction to NERSC
- Scientific Data and Analysis at NERSC
- Some data store technologies and users
 - HDF5
 - SciDB (...and SciHDF5)
 - Burst Buffers

TomoPy performance comparison between flash and disk file systems

- This I/O intensive application runtime improves by 40% with the only change switching from disk to flash
- Read performance is much better when using Flash: ~8-9x faster than disk
- Disk performance testing showed high variability (3x runtime), whereas the flash runs were very consistent (2% runtime difference)

YEARS

Top Data Management Challenges

		Storage/	Analytics/		
Capabilities	Processing	Management	Visualisation	Access	Transfer

- 1. Streaming Data from LCLS/ALS to Cori Making use of 100Gbps links, Software Defined Networking
- 2. Interactive query of LUX/LZ data O(10)TB/s, time-series, aggregations, statistics
- **3.** Scalable data management backend for LSST O(100) TB, search, spatial subsetting, full-sky analytics
- 4. In-situ, In-transit analysis for VPIC/H3D O(1T) particles, statistical summary, visualization
- 5. Seamless on-site data movement for climate simulations Burst Buffer, Lustre, HPSS, workflows
- **6.** Business analytics on streaming sensor data for NERSC operations Fault detection, workload prediction, removing bottlenecks
- 7. Reproducible science for LHC /experimental particle physics Collaborative analysis, data sharing
- 8. Fluent data organisation for all NERSC Users Immediate access to users file information and metadata
- **9. Seamless off-site data movement across centres for cosmology simulations -** Virtual data facility ; data federations

- 'NoSQL', document-oriented database
- JSON-like documents (key: value)
- Queries are javascript expressions
- Memory-mapped files queries can be fast
- Though not configured for very frequent/ highvolume writes or very many connections
- Good For:
 - Un-Structured Data ('Schema-less')
 - Mid-Size to Large, e.g. 10 GB of Text

Yushu Yao

EARS

Materials Project Gateway

) 📨 🛠 🗿 🏝 🐂 🔺 👌 🕅 Use da

Use data-mined knowledge of experimental crystal data to generate potential new compounds (currently ionic systems only)

Li ⁴ ¹ ¹² Na ^N ⁹ ²⁰ K ^C	Be ² Vig	Selec	ct up to	5 eleme	nts prese	ent						5 B	⁶ C	7 N	å	9 E	10 No
¹ Na ¹² N ⁹ ²⁰ K	2 Vig	Selec	ct up to	5 eleme	nts prese	ent							-		U		INC
⁹ K C) 2	01		Select up to 5 elements present										¹⁵	16 S	17 CI	¹⁸
	Ca	Sc	22 Ti	23 V	²⁴ Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr
7 38 Rb	³³³ Sr	³⁹	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53	⁵⁴ Xe
5 56 Cs E	s s Ba	57-71 La-Lu	72 Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
7 88 Fr F	Ra a	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	108 HS	109 Mt	110 DS	111 Rg	¹¹² Cn						
	ξ	57 La	⁵⁸ Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	⁷⁰ Yb	71 Lu	
	8	⁸⁹ Ac	90 Th	91 Pa	92 U	93 Np	⁹⁴ Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

