
I/O Framework and Event Data Storage

Developments

Peter van Gemmeren

Outline

 AthenaEventLoop

– DataHeader Satellite

– EventInfo Incident

 Data Layout

– Run 1

– ESD

– Primary AOD

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

2

Athena EventLoop and DataHeader Satellites

 In Athena I/O, the DataHeader is the most fundamental object:

– Stores StoreGate state and persistent addresses for all other objects and container.

• With hundreds of objects this becomes rather sizeable

– DataHeader also stores event provenance in support of back-navigation.

– Supports creation of object proxies and their retrieve

 For full event reading, DataHeader performance impact is small <5%, but if only
little (or no) data is read the DataHeader creates a major slow-down

– Always needed, because Control Framework retrieves EventInfo, just to iterate over
events.

• To read any object, you need the DataHeader, which stores hundreds of elements for which
hundreds of proxies are created/reset.

 Idea DataHeader Satellite: Create a DataHeader, that only stores elements for a
small (frequently needed) subset of objects and container plus reference to full
DataHeader.

– Infrastructure, first implemented in early rel. 18 and fixed (for reading) in dev.

– Currently writes “basic” satellite with just EventInfo reference.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

3

 So DataHeader Satellite writing has been in place silently since start of Run2.

– No defects or resource use that bother anyone

 But so far not used

 Until Will asked me about Athena bare-bone ‘not doing anything’ job being too
slow and I remembered…

 First, Will got a point (here is what I see, but his numbers are similar)

 AthenaEventLoop, not doing anything, even MsgSvc turned way down goes at
about a few hundred Hz:

cObj_EventInfo#... INFO Time User : Tot= 1.34 [s] Ave/Min/Max= 79.9(+-2.18e+03)/ 0/2.24e+05 [us] #=16764

cObj_DataHeader... INFO Time User : Tot= 14.6 [s] Ave/Min/Max=0.871(+- 0.59)/ 0/ 10 [ms] #=16764

ChronoStatSvc INFO Time User : Tot= 50.4 [s] #= 1

– And that already may seem fast to some, but reading DataHeader took 30% of CPU time.

• In fact the job is slower due to initialize etc

*Caution PerfMon 'evt‘ times don’t include Framework, just AthSeq (no DataHeader, EventInfo read or Proxy
creation/reset). That’s why I use ChronoStat.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

4

 Ok, so lets try the existing DataHeader Satellite:

– Has only EventInfo reference, but that is all we need.

– It is much smaller and therefore should be faster.

– Simple jobOption config: svcMgr.EventSelector.CollectionTree = "POOLContainer/basic"

cObj_DataHeader... INFO Time User : Tot= 145 [ms] Ave/Min/Max= 8.65(+- 105)/ 0/4e+03 [us] #=16764

cObj_EventInfo#... INFO Time User : Tot=0.681 [s] Ave/Min/Max= 40.6(+-2.24e+03)/ 0/2.26e+05 [us] #=16764

ChronoStatSvc INFO Time User : Tot= 15.7 [s] #= 1

– Nice Improvement:

• DataHeader read speed goes way up, as it only holds ~1% of data

• Overall time goes down even more, as Control framework has to handle only <1% of proxies

 Athena now running at ~kHz Event Iteration and DataHeader is no longer slowest.

 Can access full event content, but that causes slow reading of full DataHeader.

– May still get savings, as proxies are now generated on demand.

 Now EventInfo is slow

*I got no idea why EventInfo reading seems to have sped up with the satellite, but it seems reproducible.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

5

EventInfo retrieve for BeginEvent Incident

 That reminded me of still to-do work, avoiding control framework reads of
EventInfo if information is available as in-file TAG content.

 Since Start of Run2 ATLAS is writing small TAGs directly into xAOD files:

– Contain: EventWeight EventNumber RunNumber LumiBlockN EventTime BunchId

– Should be enough for EventInfo needed by framework.

• Still checking Incident clients…

– Code currently tested in mig4:
cObj_DataHeader... INFO Time User : Tot= 122 [ms] Ave/Min/Max= 7.28(+- 88.4)/ 0/3e+03 [us] #=16764

ChronoStatSvc INFO Time User : Tot= 14.1 [s] #= 1

 Speed-up by a little, no more EventInfo reads at all…

– One more trick from Will (Totally switch off AthenaEventLoopMgr Printout)
cObj_DataHeader... INFO Time User : Tot=0.786 [s] Ave/Min/Max= 46.9(+- 224)/ 0/5e+03 [us] #=16764

ChronoStatSvc INFO Time User : Tot= 12.9 [s] #= 1

– Athena at well over 1KHz

 But the EventInfo incident is still under development.

*I got no idea why it seems to have slowed down the satellite, but it seems reproducible.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

6

Data Layout: Run 1 recap

 For ESD and AOD, data was accessed via Athena (StoreGate).

– Athena does event-wise processing.

– StoreGate reads collections completely (all attributes), but on demand.

 Data Storage reflects that use-case

– Each StoreGate collection is streamed member-wise into single (un-split) branch

– This results in about 300 – 500 ‘sizeable’ branches.

– ‘Sizeable’ means, that even with a small auto-flush setting of 5 / 10 events reasonable
compression and I/O performance was achieved.

• Memory requirements ~ 10 MB

• Small number of total baskets -> small number of disk reads

– And no problems keeping track of the baskets either…

• Small number of events / basket -> efficient event selection

• Member-wise streaming -> no efficient single attribute access

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

7

xESD

 As many data types are share with xAOD, the ESD data product changed
substantially for Run 2

– Now stored fully split (intended for xAOD browsing)

• Between 5,000 and 10,000 branches

 But in rel. 20.1 remains having a small auto-flush setting of 5!

– Pretty obvious mismatch: Too many, too small baskets

• Poor compression (1.x, excluding Pixel).

• Significant over-head from ROOT to keep track of baskets

1. Reduce number of branches

– Limited possibilities, changed static aux store, but dynamic aux store isn’t streamed by
ROOT and has variable content/schema.

2. Increase auto-flush setting

– Not free, costs lots of memory (~un-compressed event size -> several MB per event)

 In rel. 20.7 stream static aux stores member-wise and set auto-flush to 10

– Big improvement for file size and read access speed.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

8

Primary xAOD

PxAOD

– Now stored fully split (for ROOT browsing, efficient single attribute read)

• Between 6,450 and ~10,000 branches

– 274 core, 6176 static, <x> dynamic branches (<x> varies)

– Auto-Flush was raised to 100 (from 10)

• Cost ~100 MB in VMEM, but large savings in storage disk (~20%) and faster read.

– Reasonable compression factor 3 – 4

 Still large number of small baskets not beneficial for storage size and disk access

 Analysis group now discourages direct ROOT reading of primary xAOD, so they
don’t need to be optimized for that use-case.

– Member-wise streaming of core classes and static aux store

• In 20.7,

– saves 5 – 10% storage, with no change of data content

– read speed seems better (10 – 20%), but needs more testing.

• Splitting the largest container can save an additional 1 – 2%, but is waiting for 20.7 approval.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

9

Outlook

 Features to speed up Athena EventLoop are in place and waiting for wider
adoption and testing:

– DataHeader Satellite (we could even write more)

– EventInfo Incident (still under development, but TAG attributes are there for your
enjoyment)

 KHz is not an ugly word in Athena.

 New data storage adjustments/repairs for ESD and primary xAOD are ready for
December reprocessing

– Should make significant savings in disk storage and better Athena access.

 Feedback is appreciated.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

10

Backup

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

11

ROOT Splitting

 When assigning objects (or structs) to TBranches, ROOT can either stream all data
into a single basket or assign separate baskets to each member (split the object).

 The Split-Level controls how deep in class hierarchy ROOT will assign individual
baskets:

– Split-Level = 0: No splitting, all content is stored in a single basket.

– Split-Level = 99: Split into individual data members.

• Typically better compression

• Maximum number of baskets

– Allows fine grained (column-wise) data access.

 ROOT also allows member-wise streaming into a single basket.

– Different from just Split-Level = 0, as data is ordered by member rather than object.

• Typically better compression (similar to Split-Level = 99)

• Single basket (same as Split-Level = 0)

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

12

ROOT Auto-Flush

 ROOT persistence can compress and store data baskets in different ways:

– Assigning a fixed basket size (e.g. 16K)

• Data is written to disk for each basket, when that basket reaches its basket size

– Auto-Flush after a fixed number of events/entries

• ROOT optimizes the individual basket sizes depending on the data content (which may vary
entry to entry)

• Once it reaches the number of events, all baskets are written to disk

– Build a ‘cluster’ which can enable efficient caching on read.

– Using Auto-Flush with memory allotment

• Similar to Auto-Flush with number of events, except number of entries is determined when
memory allotment is reached the first time

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

13

