
I/O Framework and Event Data Storage

Developments

Peter van Gemmeren

Outline

 AthenaEventLoop

– DataHeader Satellite

– EventInfo Incident

 Data Layout

– Run 1

– ESD

– Primary AOD

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

2

Athena EventLoop and DataHeader Satellites

 In Athena I/O, the DataHeader is the most fundamental object:

– Stores StoreGate state and persistent addresses for all other objects and container.

• With hundreds of objects this becomes rather sizeable

– DataHeader also stores event provenance in support of back-navigation.

– Supports creation of object proxies and their retrieve

 For full event reading, DataHeader performance impact is small <5%, but if only
little (or no) data is read the DataHeader creates a major slow-down

– Always needed, because Control Framework retrieves EventInfo, just to iterate over
events.

• To read any object, you need the DataHeader, which stores hundreds of elements for which
hundreds of proxies are created/reset.

 Idea DataHeader Satellite: Create a DataHeader, that only stores elements for a
small (frequently needed) subset of objects and container plus reference to full
DataHeader.

– Infrastructure, first implemented in early rel. 18 and fixed (for reading) in dev.

– Currently writes “basic” satellite with just EventInfo reference.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

3

 So DataHeader Satellite writing has been in place silently since start of Run2.

– No defects or resource use that bother anyone

 But so far not used

 Until Will asked me about Athena bare-bone ‘not doing anything’ job being too
slow and I remembered…

 First, Will got a point (here is what I see, but his numbers are similar)

 AthenaEventLoop, not doing anything, even MsgSvc turned way down goes at
about a few hundred Hz:

cObj_EventInfo#... INFO Time User : Tot= 1.34 [s] Ave/Min/Max= 79.9(+-2.18e+03)/ 0/2.24e+05 [us] #=16764

cObj_DataHeader... INFO Time User : Tot= 14.6 [s] Ave/Min/Max=0.871(+- 0.59)/ 0/ 10 [ms] #=16764

ChronoStatSvc INFO Time User : Tot= 50.4 [s] #= 1

– And that already may seem fast to some, but reading DataHeader took 30% of CPU time.

• In fact the job is slower due to initialize etc

*Caution PerfMon 'evt‘ times don’t include Framework, just AthSeq (no DataHeader, EventInfo read or Proxy
creation/reset). That’s why I use ChronoStat.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

4

 Ok, so lets try the existing DataHeader Satellite:

– Has only EventInfo reference, but that is all we need.

– It is much smaller and therefore should be faster.

– Simple jobOption config: svcMgr.EventSelector.CollectionTree = "POOLContainer/basic"

cObj_DataHeader... INFO Time User : Tot= 145 [ms] Ave/Min/Max= 8.65(+- 105)/ 0/4e+03 [us] #=16764

cObj_EventInfo#... INFO Time User : Tot=0.681 [s] Ave/Min/Max= 40.6(+-2.24e+03)/ 0/2.26e+05 [us] #=16764

ChronoStatSvc INFO Time User : Tot= 15.7 [s] #= 1

– Nice Improvement:

• DataHeader read speed goes way up, as it only holds ~1% of data

• Overall time goes down even more, as Control framework has to handle only <1% of proxies

 Athena now running at ~kHz Event Iteration and DataHeader is no longer slowest.

 Can access full event content, but that causes slow reading of full DataHeader.

– May still get savings, as proxies are now generated on demand.

 Now EventInfo is slow

*I got no idea why EventInfo reading seems to have sped up with the satellite, but it seems reproducible.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

5

EventInfo retrieve for BeginEvent Incident

 That reminded me of still to-do work, avoiding control framework reads of
EventInfo if information is available as in-file TAG content.

 Since Start of Run2 ATLAS is writing small TAGs directly into xAOD files:

– Contain: EventWeight EventNumber RunNumber LumiBlockN EventTime BunchId

– Should be enough for EventInfo needed by framework.

• Still checking Incident clients…

– Code currently tested in mig4:
cObj_DataHeader... INFO Time User : Tot= 122 [ms] Ave/Min/Max= 7.28(+- 88.4)/ 0/3e+03 [us] #=16764

ChronoStatSvc INFO Time User : Tot= 14.1 [s] #= 1

 Speed-up by a little, no more EventInfo reads at all…

– One more trick from Will (Totally switch off AthenaEventLoopMgr Printout)
cObj_DataHeader... INFO Time User : Tot=0.786 [s] Ave/Min/Max= 46.9(+- 224)/ 0/5e+03 [us] #=16764

ChronoStatSvc INFO Time User : Tot= 12.9 [s] #= 1

– Athena at well over 1KHz

 But the EventInfo incident is still under development.

*I got no idea why it seems to have slowed down the satellite, but it seems reproducible.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

6

Data Layout: Run 1 recap

 For ESD and AOD, data was accessed via Athena (StoreGate).

– Athena does event-wise processing.

– StoreGate reads collections completely (all attributes), but on demand.

 Data Storage reflects that use-case

– Each StoreGate collection is streamed member-wise into single (un-split) branch

– This results in about 300 – 500 ‘sizeable’ branches.

– ‘Sizeable’ means, that even with a small auto-flush setting of 5 / 10 events reasonable
compression and I/O performance was achieved.

• Memory requirements ~ 10 MB

• Small number of total baskets -> small number of disk reads

– And no problems keeping track of the baskets either…

• Small number of events / basket -> efficient event selection

• Member-wise streaming -> no efficient single attribute access

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

7

xESD

 As many data types are share with xAOD, the ESD data product changed
substantially for Run 2

– Now stored fully split (intended for xAOD browsing)

• Between 5,000 and 10,000 branches

 But in rel. 20.1 remains having a small auto-flush setting of 5!

– Pretty obvious mismatch: Too many, too small baskets

• Poor compression (1.x, excluding Pixel).

• Significant over-head from ROOT to keep track of baskets

1. Reduce number of branches

– Limited possibilities, changed static aux store, but dynamic aux store isn’t streamed by
ROOT and has variable content/schema.

2. Increase auto-flush setting

– Not free, costs lots of memory (~un-compressed event size -> several MB per event)

 In rel. 20.7 stream static aux stores member-wise and set auto-flush to 10

– Big improvement for file size and read access speed.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

8

Primary xAOD

PxAOD

– Now stored fully split (for ROOT browsing, efficient single attribute read)

• Between 6,450 and ~10,000 branches

– 274 core, 6176 static, <x> dynamic branches (<x> varies)

– Auto-Flush was raised to 100 (from 10)

• Cost ~100 MB in VMEM, but large savings in storage disk (~20%) and faster read.

– Reasonable compression factor 3 – 4

 Still large number of small baskets not beneficial for storage size and disk access

 Analysis group now discourages direct ROOT reading of primary xAOD, so they
don’t need to be optimized for that use-case.

– Member-wise streaming of core classes and static aux store

• In 20.7,

– saves 5 – 10% storage, with no change of data content

– read speed seems better (10 – 20%), but needs more testing.

• Splitting the largest container can save an additional 1 – 2%, but is waiting for 20.7 approval.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

9

Outlook

 Features to speed up Athena EventLoop are in place and waiting for wider
adoption and testing:

– DataHeader Satellite (we could even write more)

– EventInfo Incident (still under development, but TAG attributes are there for your
enjoyment)

 KHz is not an ugly word in Athena.

 New data storage adjustments/repairs for ESD and primary xAOD are ready for
December reprocessing

– Should make significant savings in disk storage and better Athena access.

 Feedback is appreciated.

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

10

Backup

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

11

ROOT Splitting

 When assigning objects (or structs) to TBranches, ROOT can either stream all data
into a single basket or assign separate baskets to each member (split the object).

 The Split-Level controls how deep in class hierarchy ROOT will assign individual
baskets:

– Split-Level = 0: No splitting, all content is stored in a single basket.

– Split-Level = 99: Split into individual data members.

• Typically better compression

• Maximum number of baskets

– Allows fine grained (column-wise) data access.

 ROOT also allows member-wise streaming into a single basket.

– Different from just Split-Level = 0, as data is ordered by member rather than object.

• Typically better compression (similar to Split-Level = 99)

• Single basket (same as Split-Level = 0)

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

12

ROOT Auto-Flush

 ROOT persistence can compress and store data baskets in different ways:

– Assigning a fixed basket size (e.g. 16K)

• Data is written to disk for each basket, when that basket reaches its basket size

– Auto-Flush after a fixed number of events/entries

• ROOT optimizes the individual basket sizes depending on the data content (which may vary
entry to entry)

• Once it reaches the number of events, all baskets are written to disk

– Build a ‘cluster’ which can enable efficient caching on read.

– Using Auto-Flush with memory allotment

• Similar to Auto-Flush with number of events, except number of entries is determined when
memory allotment is reached the first time

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

13

