
Reviewing Athena I/O Components

from the Thread Safety

Perspective

Marcin Nowak, BNL

Thread Safety Concepts

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 2

 Code can be made thread-safe to a different degree

1. „True” thread safety requires data structure integrity protection on

different levels, correct execution logic and deadlock avoidance

 Good parallelism, low memory overhead

 (Very?) difficult to implement

2. Global lock and access serialization

 No parallelism but also no memory overhead

 Easy to implement

3. Concurrent independent workers

 Good parallelism but biggest memory overhead

 Ease of adaptation of an existing code depends on the design

 Requires code review to find places where workers interact with each

other

 Threat: singletons (global, static, framework-wide data structures)

ROOT Thread Safety

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 3

 ROOT thread safety is continuously improving

 we should be using at least ROOT 6.4

 ROOT 6.6 adds improvements in usability

 Important points:

 ROOT „static” API (TClass, gSystem, gInterpreter) is thread-safe

 Important for types and dictionaries

 I/O operations can be performed simultaneously on different files

 The same file can not be opened twice (without closing it first)

 The same file can be accessed by different threads in a serialized

manner

 We have not tested these features yet!

 APR opens ROOT files using FileManager

 Read-only files are shared

 Still need to check thread safety

Athena I/O Components

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 4

 Core APR components:

 PersistencySvc

 StorageSvc

 RootStorageSvc

 Helper APR components

 FileCatalog

 Collections

 AthenaPOOL

 PoolSvc

 AthenaPoolCnvSvc

 T/P Converters

 Other

 FileManager

APR: RootStorageSvc

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 5

 Implementation of the StorageSvc using ROOT persistency

 Granularity – ROOT file

 Corresponds to the notion of an APR database

 May have multiple TTrees

 Most of ATLAS Event Data in one common tree

 Multiple object containers

 Single transaction per file (database)

 Original POOL code seems well adapted to the concurrent workers

model

 No global or static data

 Possibly needing a cleanup from ROOT5 features: ClassLoader

 Recent improvements for xAOD introduced global AuxTypeRegistry

 Believed to be made thread-safe by Scott

 FileManager – to be checked

APR: StorageSvc

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 6

 This package deals with datastore organization (databases, containers),

transactions and type information

 Not really a service – multiple instances can be (and are) created

 good fit for the concurrent worker model

 Several instances of static data:

 Debugging counters

 Used only for special purpose debugging, otherwise thread-safe

 May need to be protected

 Central object schema repository

 Needs to be made thread-safe

 Type/GUID maps

 Needs to be made thread-safe

 Static data needs to be protected in any scenario involving parallel I/O

APR: PersistencySvc

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 7

 Our top-level APR package dealing with file catalog, configuration,

database registry and managing the global transaction

 Also not a service – Athena already uses multiple instances of it

 In fact it’s just a wrapper around UserSession class

 No global or static data

 But the FileCatalog accesses a file on disk, which makes it a shared

resource

 Creating an instance of PersistencySvc automatically creates a new

StorageSvc and the required RootStorageSvc objects. These instances

can be used simultaneously, as long as they all open different files.

 Assuming we add protection for StorageSvc static data

and check FileCatalog and FileManager

T/P Converters

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 8

 T/P converters are standalone conversion objects that are used mainly

by the AthenaPOOL layer (above APR)

 A T/P converter is usually a data member of an AthenaPOOL (Gaudi)

converter that is managed by the Conversion Service

 The preferred way to use T/P converters concurrently would be to

create multiple copies of them (the concurrent worker model)

- but that is not easy with the current Conversion Service

 Early test with AthenaHive with simultaneous reading and writing showed

success when 2 separate instances of the AthCnvSvc were used – one

for reading and another one for writing

 Each instance of AthCnvSvc creates separate copies of converters

