
Reviewing Athena I/O Components

from the Thread Safety

Perspective

Marcin Nowak, BNL

Thread Safety Concepts

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 2

 Code can be made thread-safe to a different degree

1. „True” thread safety requires data structure integrity protection on

different levels, correct execution logic and deadlock avoidance

 Good parallelism, low memory overhead

 (Very?) difficult to implement

2. Global lock and access serialization

 No parallelism but also no memory overhead

 Easy to implement

3. Concurrent independent workers

 Good parallelism but biggest memory overhead

 Ease of adaptation of an existing code depends on the design

 Requires code review to find places where workers interact with each

other

 Threat: singletons (global, static, framework-wide data structures)

ROOT Thread Safety

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 3

 ROOT thread safety is continuously improving

 we should be using at least ROOT 6.4

 ROOT 6.6 adds improvements in usability

 Important points:

 ROOT „static” API (TClass, gSystem, gInterpreter) is thread-safe

 Important for types and dictionaries

 I/O operations can be performed simultaneously on different files

 The same file can not be opened twice (without closing it first)

 The same file can be accessed by different threads in a serialized

manner

 We have not tested these features yet!

 APR opens ROOT files using FileManager

 Read-only files are shared

 Still need to check thread safety

Athena I/O Components

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 4

 Core APR components:

 PersistencySvc

 StorageSvc

 RootStorageSvc

 Helper APR components

 FileCatalog

 Collections

 AthenaPOOL

 PoolSvc

 AthenaPoolCnvSvc

 T/P Converters

 Other

 FileManager

APR: RootStorageSvc

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 5

 Implementation of the StorageSvc using ROOT persistency

 Granularity – ROOT file

 Corresponds to the notion of an APR database

 May have multiple TTrees

 Most of ATLAS Event Data in one common tree

 Multiple object containers

 Single transaction per file (database)

 Original POOL code seems well adapted to the concurrent workers

model

 No global or static data

 Possibly needing a cleanup from ROOT5 features: ClassLoader

 Recent improvements for xAOD introduced global AuxTypeRegistry

 Believed to be made thread-safe by Scott

 FileManager – to be checked

APR: StorageSvc

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 6

 This package deals with datastore organization (databases, containers),

transactions and type information

 Not really a service – multiple instances can be (and are) created

 good fit for the concurrent worker model

 Several instances of static data:

 Debugging counters

 Used only for special purpose debugging, otherwise thread-safe

 May need to be protected

 Central object schema repository

 Needs to be made thread-safe

 Type/GUID maps

 Needs to be made thread-safe

 Static data needs to be protected in any scenario involving parallel I/O

APR: PersistencySvc

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 7

 Our top-level APR package dealing with file catalog, configuration,

database registry and managing the global transaction

 Also not a service – Athena already uses multiple instances of it

 In fact it’s just a wrapper around UserSession class

 No global or static data

 But the FileCatalog accesses a file on disk, which makes it a shared

resource

 Creating an instance of PersistencySvc automatically creates a new

StorageSvc and the required RootStorageSvc objects. These instances

can be used simultaneously, as long as they all open different files.

 Assuming we add protection for StorageSvc static data

and check FileCatalog and FileManager

T/P Converters

LBNL Software Meeting Nov 2015 Marcin Nowak, BNL 8

 T/P converters are standalone conversion objects that are used mainly

by the AthenaPOOL layer (above APR)

 A T/P converter is usually a data member of an AthenaPOOL (Gaudi)

converter that is managed by the Conversion Service

 The preferred way to use T/P converters concurrently would be to

create multiple copies of them (the concurrent worker model)

- but that is not easy with the current Conversion Service

 Early test with AthenaHive with simultaneous reading and writing showed

success when 2 separate instances of the AthCnvSvc were used – one

for reading and another one for writing

 Each instance of AthCnvSvc creates separate copies of converters

