
Tracking In High Pile-up.

LS1 Experiences and Future Outlook

N. Styles1

1DESY,
Software TIM Meeting, Berkeley
30/09/2015

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 2

Introduction

> Reminder:

 Were at risk of hitting a big problem with
CPU after Run 1

 Anticipated increased <mu>, and
associated combinatorial increase in
CPU

 Track Reconstruction by far the biggest
consumer, with worst scaling

 Was incumbent on Tracking to make big
improvements

> Large program of software
improvements undertaken during
LS1 to mitigate this

 Allow reconstruction to meet goal of 1
kHz Tier-0 processing

 ...at no cost to physics performance!
Release 17

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 3

What we knew beforehand

> “Common” (gperftools,gperftools) and ATLAS-specific tools, as well as
general insight into what was running (and how) in Run 1

 Gave directions in which to look for improvements/optimisations

> Tracking heavy user of linear algebra/matrix manipulation

 Big gains possible from speed-ups in such operations

> Significant CPU usage in magnetic field access during Runge-Kutta
propagation

 Magnetic field service was still FORTRAN90 implementation

> Algorithmic improvements likely possible

 Be “smarter” about what we do and when we do it

> Number of infrastructure changes bring some improvement “for free”
(from tracking POV)

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 4

What we knew beforehand – Algorithm Breakdown

> Most time spent in Silicon
Spacepoint Seeded Track
Finder

 Not surprising – main
“workhorse”

 Likewise, ambiguity and
extension processing expected
to be high up list

> TRT Segment finder 2nd
highest

 Part of “Back-Tracking”

 Less clear so much time
should be spent here

Release 17.2

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 5

Maths Library Replacement

> Tested performance of alternatives to
CLHEP

 Testbed reproducing typical use cases for tracking

> Replaced CLHEP with Eigen for matrix
operations in track reconstruction

 Open source, vectorised library

> Required large-scale migration effort

 Big effort from developer pool

> Eigen hidden behind “Amg::” interface level

 Helper classes for common operations not
available natively in Eigen

 Will significantly reduce overhead of any future
library changes (if necessary)

Speed-up WRT CLHEP for multiplication
of rectangular (3x5) matrices

(5x5)

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 6

Magnetic Field Updates

> Previously access to Magnetic Field information in ATLAS was through a
FORTRAN90 implementation

 This was migrated to C++

 Code profiled and tuned during this process

 Minimized number of unit conversions performed

> Further improvements

 Stepwise Runge-Kutta updates can fall within same magnetic field map cell –
introduced caching of position and value of last call

 Addition of approximate, φ-symmetric map for faster access when full detail is not
required

> Resulted in a significant overall speed-up in Magnetic Field Access

 Factor >2 improvement over old implementation for a typical access pattern

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 7

Algorithmic Updates – Track Seeding

> Addition of IBL allows seed confirmation with 4th hit

 increases seed purity

 Reduce time spent processing track candidates that will not eventually be used

> Introduction of 'Z boundary seeding'

 Fast 1D vertexing used to set allowed z range of seeds

> Overall >50% improvement with no efficiency loss

Pile-up PPP PPS PSS SSS

0 57% 26% 29% 66%

40 17% 6% 5% 35%

Pile-up PPP + I PPS + I PSS + I SSS + I

0 79% 53% 52% 86%

40 39% 8% 16% 70%

Fraction of seed triplets resulting in a “good” track candidate

Strategy Efficiency CPU time

Run 1 94.0 % 9.5 sec

Run 2 94.2 % 4.7 sec

Event reconstruction time for tt at <mu>=40
on local machine

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 8

Further Algorithmic Updates

> Calorimeter-seeded back-tracking

 TRT-seeded tracks primarily of interest for eGamma

 Do not run back-tracking unless there is a seed calorimeter cluster

> Clustering & Ambiguity solving updates for 'Tracking In Dense
Environments'

 NN-based splitting of clusters from multiple tracks

 For run 2, only run during ambiguity solving, for clusters on track

 Further tuning of parameters to improve performance esp. in high-p
T
 jet cores

 10% CPU saving on top of significant performance improvements

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 9

Results of LS1 Improvements

> Overall, LS1 improvements brought factor ~4 reduction in CPU usage

 Allowed goal of 1 kHz tier-0 processing

> Further improvements from 20.1 → 20.7

 Coming mostly from detailed optimizations of Si Track finding

 i.e. not coming from technical updates, but rather through deep understanding and
study of algorithm

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 10

Looking towards the future

> Future plans include data-taking with <mu>~80 and <mu> up to 200
following HL-LHC Upgrade

 Large increases compared to that between Run 1 and Run 2

> Have not solved the problem of <mu> scaling of CPU time in
reconstruction

 Can still expect big increases due to increased combinatorics to deal with

> Cannot just turn the same handles again and again to win back CPU

> HL-LHC will also come
together with new Inner
Tracker (ITK)

 Optimisation for a different
layout, with different
technologies (i.e. silicon only,
no TRT)

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 11

What does HL-LHC ITk Reconstruction currently look like

> Algorithm timing breakdown for tt events with <mu>=200

 Ran ITK only in 20.3.1 – all other detectors switched off

> Run on random lxplus node, so not to be taken as absolute

 Give some idea of ballpark figures

> Items in red only relevant for Monte Carlo

> ITK reconstruction is quite close to current track reconstruction

 Many optimisations which could be made...

 InDetSCT_Clusterization:Execute INFO Time User : Tot= 6.64 [s] Ave/Min/Max= 266(+- 33.7)/ 229/ 373 [ms] #= 25
cObjR_InDetSimDataCollection#PixelSDO_Map INFO Time User : Tot= 6.95 [s] Ave/Min/Max= 278(+- 38.3)/ 199/ 414 [ms] #= 25
InDetSiTrackerSpacePointFinder:Execute INFO Time User : Tot= 9.38 [s] Ave/Min/Max= 375(+- 49.4)/ 321/ 544 [ms] #= 25
cObj_InDetSimDataCollection#PixelSDO_Map INFO Time User : Tot= 10.8 [s] Ave/Min/Max= 432(+- 61.9)/ 306/ 640 [ms] #= 25
SiSPSeededSLHCTracksDetailedTruthMaker:Execute INFO Time User : Tot= 11.9 [s] Ave/Min/Max= 478(+- 119)/ 301/ 862 [ms] #= 25
InDetTrackClusterAssValidation:Execute INFO Time User : Tot= 13.9 [s] Ave/Min/Max=0.558(+-0.0816)/0.416/0.742 [s] #= 25
nDetPixelClusterization:Execute INFO Time User : Tot= 16.4 [s] Ave/Min/Max=0.655(+-0.136)/0.496/ 1.13 [s] #= 25
InDetPRD_MultiTruthMakerSi:Execute INFO Time User : Tot= 20.6 [s] Ave/Min/Max=0.822(+-0.119)/0.566/ 1.16 [s] #= 25
InDetRecStatistics:Execute INFO Time User : Tot= 23.5 [s] Ave/Min/Max=0.939(+-0.254)/0.552/ 1.64 [s] #= 25
commitOutput INFO Time User : Tot= 40 [s] Ave/Min/Max= 1.54(+-0.349)/0.001/ 2.05 [s] #= 26
StreamESD:Execute INFO Time User : Tot= 51.5 [s] Ave/Min/Max= 2.06(+-0.882)/ 1.57/ 6.27 [s] #= 25
InDetAmbiguitySolverForwardSLHCTracks:Execute INFO Time User : Tot= 55.3 [s] Ave/Min/Max= 2.21(+-0.346)/ 1.44/ 3.03 [s] #= 25
InDetAmbiguitySolverSLHC:Execute INFO Time User : Tot= 8.66[min] Ave/Min/Max= 20.8(+- 5.21)/ 12.4/ 34.9 [s] #= 25
InDetSiSpTrackFinderForwardSLHCTracks:Execute INFO Time User : Tot= 25.8[min] Ave/Min/Max= 61.8(+- 9.84)/ 38.1/ 85.3 [s] #= 25
InDetSiSpTrackFinderSLHC:Execute INFO Time User : Tot= 75.2[min] Ave/Min/Max= 181(+- 38.1)/ 117/ 294 [s] #= 25

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 12

What Can/Should be Done at this point in time?

> Does it make any sense to think too hard about technical performance of
ITK reconstruction now?

 Detector layout not yet finalised – can have an influence. E.g. Layout-specific Track
Seeding tunings may give advantages over using version optimised for current ID

 ITK-specific software developments are mostly interested in improving physics
performance of reconstruction – currently first priority

 Currently only makes up a small fraction of production jobs

> However...

 We ARE running ITK sim/digi/reco, and will in future be running more – don't want to
waste resources unnecessarily if there are improvements that can be made easily

 Aspects related to design choices in future framework may be best implemented as
soon as possible

 Fitting within the available budget will be a big challenge

> ITK software should be kept up-to-date with latest developments

 In past has lagged behind due to specific needs or different timescales compared to
general ATLAS developments

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 13

Interesting Example from Vertexing

> New vertex seeding algorithm has been in
development for some time

 Available, but not yet default, in 20.7

 Based on ray-tracing/back projection techniques based
on medical imaging techniques

 ATL-PHYS-PUB-2015-008

> Heavy CPU overhead...

 ...but much better scaling with <mu> - approximately flat
(at least for relatively low <mu>)

 Likely that optimization will cause 'cross-over' point to
come at lower <mu>

> Vertex seeding not currently a heavy CPU
consumer overall

 However, perhaps an interesting illustrative example –
trading heavier 'constant term' for better scaling

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 14

Summary

> Inner Detector Tracking suffers from significantly larger CPU overheads
as pile-up increases

> Wide-ranging program of updates and optimizations during LS1 were
undertaken to mitigate this

 Reached target for Run 2

> Pile-up will continue to increase in run 3 and beyond

 Cannot rely on just turning the same handles again

 Andi has given overview of where/how multithreading and other aspects of parallelism
can help

> Perhaps too early to start detailed optimizations of algorithms for new
detector layout...

 ...but not too early to start things about broader, general strategies for fighting against
pile-up scaling

 ...Nor for thinking about how best to operate within AthenaMT

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 15

Some random thoughts

> Are there more 'handles' we can exploit in events

 A la what is done for TRT-seeded back tracking or brem recovery, to only run costly
algorithms when strictly necessary

 Could perhaps be compatible with use of Event Views as described by Ben yesterday?

> Tracking is generally known to be “not easily parallelisable”

 Based around early candidate rejection – inherently serial

 Is now the time to start thinking about what implications would be of approaches that
sacrifice (some of) the early rejection power for being more amenable to parallelisation?

 Requires going back to drawing board

 If starting now, still time to be in good shape for HL-LHC?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

