
Tracking In High Pile-up.

LS1 Experiences and Future Outlook

N. Styles1

1DESY,
Software TIM Meeting, Berkeley
30/09/2015

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 2

Introduction

> Reminder:

 Were at risk of hitting a big problem with
CPU after Run 1

 Anticipated increased <mu>, and
associated combinatorial increase in
CPU

 Track Reconstruction by far the biggest
consumer, with worst scaling

 Was incumbent on Tracking to make big
improvements

> Large program of software
improvements undertaken during
LS1 to mitigate this

 Allow reconstruction to meet goal of 1
kHz Tier-0 processing

 ...at no cost to physics performance!
Release 17

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 3

What we knew beforehand

> “Common” (gperftools,gperftools) and ATLAS-specific tools, as well as
general insight into what was running (and how) in Run 1

 Gave directions in which to look for improvements/optimisations

> Tracking heavy user of linear algebra/matrix manipulation

 Big gains possible from speed-ups in such operations

> Significant CPU usage in magnetic field access during Runge-Kutta
propagation

 Magnetic field service was still FORTRAN90 implementation

> Algorithmic improvements likely possible

 Be “smarter” about what we do and when we do it

> Number of infrastructure changes bring some improvement “for free”
(from tracking POV)

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 4

What we knew beforehand – Algorithm Breakdown

> Most time spent in Silicon
Spacepoint Seeded Track
Finder

 Not surprising – main
“workhorse”

 Likewise, ambiguity and
extension processing expected
to be high up list

> TRT Segment finder 2nd
highest

 Part of “Back-Tracking”

 Less clear so much time
should be spent here

Release 17.2

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 5

Maths Library Replacement

> Tested performance of alternatives to
CLHEP

 Testbed reproducing typical use cases for tracking

> Replaced CLHEP with Eigen for matrix
operations in track reconstruction

 Open source, vectorised library

> Required large-scale migration effort

 Big effort from developer pool

> Eigen hidden behind “Amg::” interface level

 Helper classes for common operations not
available natively in Eigen

 Will significantly reduce overhead of any future
library changes (if necessary)

Speed-up WRT CLHEP for multiplication
of rectangular (3x5) matrices

(5x5)

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 6

Magnetic Field Updates

> Previously access to Magnetic Field information in ATLAS was through a
FORTRAN90 implementation

 This was migrated to C++

 Code profiled and tuned during this process

 Minimized number of unit conversions performed

> Further improvements

 Stepwise Runge-Kutta updates can fall within same magnetic field map cell –
introduced caching of position and value of last call

 Addition of approximate, φ-symmetric map for faster access when full detail is not
required

> Resulted in a significant overall speed-up in Magnetic Field Access

 Factor >2 improvement over old implementation for a typical access pattern

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 7

Algorithmic Updates – Track Seeding

> Addition of IBL allows seed confirmation with 4th hit

 increases seed purity

 Reduce time spent processing track candidates that will not eventually be used

> Introduction of 'Z boundary seeding'

 Fast 1D vertexing used to set allowed z range of seeds

> Overall >50% improvement with no efficiency loss

Pile-up PPP PPS PSS SSS

0 57% 26% 29% 66%

40 17% 6% 5% 35%

Pile-up PPP + I PPS + I PSS + I SSS + I

0 79% 53% 52% 86%

40 39% 8% 16% 70%

Fraction of seed triplets resulting in a “good” track candidate

Strategy Efficiency CPU time

Run 1 94.0 % 9.5 sec

Run 2 94.2 % 4.7 sec

Event reconstruction time for tt at <mu>=40
on local machine

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 8

Further Algorithmic Updates

> Calorimeter-seeded back-tracking

 TRT-seeded tracks primarily of interest for eGamma

 Do not run back-tracking unless there is a seed calorimeter cluster

> Clustering & Ambiguity solving updates for 'Tracking In Dense
Environments'

 NN-based splitting of clusters from multiple tracks

 For run 2, only run during ambiguity solving, for clusters on track

 Further tuning of parameters to improve performance esp. in high-p
T
 jet cores

 10% CPU saving on top of significant performance improvements

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 9

Results of LS1 Improvements

> Overall, LS1 improvements brought factor ~4 reduction in CPU usage

 Allowed goal of 1 kHz tier-0 processing

> Further improvements from 20.1 → 20.7

 Coming mostly from detailed optimizations of Si Track finding

 i.e. not coming from technical updates, but rather through deep understanding and
study of algorithm

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 10

Looking towards the future

> Future plans include data-taking with <mu>~80 and <mu> up to 200
following HL-LHC Upgrade

 Large increases compared to that between Run 1 and Run 2

> Have not solved the problem of <mu> scaling of CPU time in
reconstruction

 Can still expect big increases due to increased combinatorics to deal with

> Cannot just turn the same handles again and again to win back CPU

> HL-LHC will also come
together with new Inner
Tracker (ITK)

 Optimisation for a different
layout, with different
technologies (i.e. silicon only,
no TRT)

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 11

What does HL-LHC ITk Reconstruction currently look like

> Algorithm timing breakdown for tt events with <mu>=200

 Ran ITK only in 20.3.1 – all other detectors switched off

> Run on random lxplus node, so not to be taken as absolute

 Give some idea of ballpark figures

> Items in red only relevant for Monte Carlo

> ITK reconstruction is quite close to current track reconstruction

 Many optimisations which could be made...

 InDetSCT_Clusterization:Execute INFO Time User : Tot= 6.64 [s] Ave/Min/Max= 266(+- 33.7)/ 229/ 373 [ms] #= 25
cObjR_InDetSimDataCollection#PixelSDO_Map INFO Time User : Tot= 6.95 [s] Ave/Min/Max= 278(+- 38.3)/ 199/ 414 [ms] #= 25
InDetSiTrackerSpacePointFinder:Execute INFO Time User : Tot= 9.38 [s] Ave/Min/Max= 375(+- 49.4)/ 321/ 544 [ms] #= 25
cObj_InDetSimDataCollection#PixelSDO_Map INFO Time User : Tot= 10.8 [s] Ave/Min/Max= 432(+- 61.9)/ 306/ 640 [ms] #= 25
SiSPSeededSLHCTracksDetailedTruthMaker:Execute INFO Time User : Tot= 11.9 [s] Ave/Min/Max= 478(+- 119)/ 301/ 862 [ms] #= 25
InDetTrackClusterAssValidation:Execute INFO Time User : Tot= 13.9 [s] Ave/Min/Max=0.558(+-0.0816)/0.416/0.742 [s] #= 25
nDetPixelClusterization:Execute INFO Time User : Tot= 16.4 [s] Ave/Min/Max=0.655(+-0.136)/0.496/ 1.13 [s] #= 25
InDetPRD_MultiTruthMakerSi:Execute INFO Time User : Tot= 20.6 [s] Ave/Min/Max=0.822(+-0.119)/0.566/ 1.16 [s] #= 25
InDetRecStatistics:Execute INFO Time User : Tot= 23.5 [s] Ave/Min/Max=0.939(+-0.254)/0.552/ 1.64 [s] #= 25
commitOutput INFO Time User : Tot= 40 [s] Ave/Min/Max= 1.54(+-0.349)/0.001/ 2.05 [s] #= 26
StreamESD:Execute INFO Time User : Tot= 51.5 [s] Ave/Min/Max= 2.06(+-0.882)/ 1.57/ 6.27 [s] #= 25
InDetAmbiguitySolverForwardSLHCTracks:Execute INFO Time User : Tot= 55.3 [s] Ave/Min/Max= 2.21(+-0.346)/ 1.44/ 3.03 [s] #= 25
InDetAmbiguitySolverSLHC:Execute INFO Time User : Tot= 8.66[min] Ave/Min/Max= 20.8(+- 5.21)/ 12.4/ 34.9 [s] #= 25
InDetSiSpTrackFinderForwardSLHCTracks:Execute INFO Time User : Tot= 25.8[min] Ave/Min/Max= 61.8(+- 9.84)/ 38.1/ 85.3 [s] #= 25
InDetSiSpTrackFinderSLHC:Execute INFO Time User : Tot= 75.2[min] Ave/Min/Max= 181(+- 38.1)/ 117/ 294 [s] #= 25

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 12

What Can/Should be Done at this point in time?

> Does it make any sense to think too hard about technical performance of
ITK reconstruction now?

 Detector layout not yet finalised – can have an influence. E.g. Layout-specific Track
Seeding tunings may give advantages over using version optimised for current ID

 ITK-specific software developments are mostly interested in improving physics
performance of reconstruction – currently first priority

 Currently only makes up a small fraction of production jobs

> However...

 We ARE running ITK sim/digi/reco, and will in future be running more – don't want to
waste resources unnecessarily if there are improvements that can be made easily

 Aspects related to design choices in future framework may be best implemented as
soon as possible

 Fitting within the available budget will be a big challenge

> ITK software should be kept up-to-date with latest developments

 In past has lagged behind due to specific needs or different timescales compared to
general ATLAS developments

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 13

Interesting Example from Vertexing

> New vertex seeding algorithm has been in
development for some time

 Available, but not yet default, in 20.7

 Based on ray-tracing/back projection techniques based
on medical imaging techniques

 ATL-PHYS-PUB-2015-008

> Heavy CPU overhead...

 ...but much better scaling with <mu> - approximately flat
(at least for relatively low <mu>)

 Likely that optimization will cause 'cross-over' point to
come at lower <mu>

> Vertex seeding not currently a heavy CPU
consumer overall

 However, perhaps an interesting illustrative example –
trading heavier 'constant term' for better scaling

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 14

Summary

> Inner Detector Tracking suffers from significantly larger CPU overheads
as pile-up increases

> Wide-ranging program of updates and optimizations during LS1 were
undertaken to mitigate this

 Reached target for Run 2

> Pile-up will continue to increase in run 3 and beyond

 Cannot rely on just turning the same handles again

 Andi has given overview of where/how multithreading and other aspects of parallelism
can help

> Perhaps too early to start detailed optimizations of algorithms for new
detector layout...

 ...but not too early to start things about broader, general strategies for fighting against
pile-up scaling

 ...Nor for thinking about how best to operate within AthenaMT

N. Styles | Software TIM Berkeley | 30/09/2015 | Slide 15

Some random thoughts

> Are there more 'handles' we can exploit in events

 A la what is done for TRT-seeded back tracking or brem recovery, to only run costly
algorithms when strictly necessary

 Could perhaps be compatible with use of Event Views as described by Ben yesterday?

> Tracking is generally known to be “not easily parallelisable”

 Based around early candidate rejection – inherently serial

 Is now the time to start thinking about what implications would be of approaches that
sacrifice (some of) the early rejection power for being more amenable to parallelisation?

 Requires going back to drawing board

 If starting now, still time to be in good shape for HL-LHC?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

