

Muon reconstruction

Edward Moyse

Muon Spectrometer

- The Muon Spectrometer forms the outer layer of ATLAS and is designed to detect tracks in the region 0 < |eta| < 2.7. It consists of a barrel section and two endcaps, all made up of three layers of chambers fitted around toroidal magnets. Four types of chamber technologies are used:
 - Monitored Drift Tubes(MDT)-precision measurements (80um per tube) in the bending plane
 - Cathode Strips Chambers (CSC) used in the forward regions (2<|eta|<2.7) with a resolution of ~60um in the bending (eta) plane, and 5mm in the transverse plane (phi).
 - Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC)-used by the trigger and provide eta and phi measurements with a resolution of ~1cm each

- Very different challenges to Inner Detector
 - High background level present in the ATLAS experimental hall which yields high single tube occupancy may spoil or mask muon hits and create fake track segments from combinatorial hit associations
 - Large variety of the muon chambers and the complexity of the layout
 - The large distances between measuring stations causes significant extrapolation uncertainties.
 - The high inhomogeneity of the magnetic field and dead material prevents the use of simple analytical shapes for muon tracks of these chambers
- Reconstruction proceeds in several steps:
 - Pattern finding
 - Segment building
 - Track finding

Hits pattern finding

- Use 2D Hough transform using (R0, φ)
- The Hough transform
 - transforms points in the x,y space into lines in $R0,\varphi$
 - straight lines in the xy plane are points in the Hough space
 - the lines of all hits from a given line cross in one point in the Hough space
 - when combined with a histogramming technique the problem reduces to finding the bins with the highest value in the histogram
- Advantages of the method
 - very good background rejection properties
 - complexity almost linear with number of hits

Segment finding (MDT)

- Local segment finding in the individual MDT stations offers a powerful way of reducing combinatorics
 - the bending of muons above p = 3 GeV is sufficiently small: their trajectory can be approximated by a straight line
 - MDTs provide a very high precision measurement of the trajectory of the muon (80µm average resolution) -> good background rejection
 - trigger confirmation can be used to reduce out-of-time background

Track finding

Four stage track reconstruction

- Select high quality seed segment
- Look for chambers crossed by the track without hits
- Calculate track intersection with the chamber
 - Search for hits in a road around the intersection
- Add hits to the track
 - First add trigger hits (if any) and refit
 - Run MDT segment finding if more than three MDT hits are within the road
- Rerun hole search if any hits were added
- Add crossed channels without hits to the track as holes

- Final stage is combination (not covering in any detail here):
 - Combined muons ID + MS hits, full refit
 - Can also be ID seeded i.e. extrapolate ID track to MS and start reconstruction in that road
 - Standalone muons no ID track, so just MS
 - Segment tagged muons ID track + matching segment
 - Calo tgged muons ID track + matching calorimeter energy deposit
- Code is already highly optimised
 - Competition between competing software chains, and various software reviews
 - Code used in trigger, where performance is very important
 - Recently largely re-written
 - LOTS of details in summary talk from Niels here:
 - https://indico.cern.ch/event/279845/session/0/contribution/1/attachments/512634/707448/
 TrackingLectureMuons.pdf

- Truthfully, not much thought put into this yet
 - Code already very fast relative to the rest of ATLAS - with limited resources, not high priority
 - Pattern recognition starts in independent chambers - so should be very amenable to parallelism.
 - But this stage of the reconstruction is very fast (not visible to the right)
 - Time is mostly taken with combinatorics between chambers... certainly can be improved, but not nearly so easy...

