
A.Formica : Berkeley TIM 2015/11/09

Conditions Database
for Run3

Status of present infrastructure and proposed architecture
A.Formica, E.Gallas, D.Barberis

Conditions database for Run3A.Formica: Berkeley TIM

Topics
• Present infrastructure: COOL

‣ what have we learned during Run1 and Run2

• Proposal summary

‣ architecture and DB organization

- on going prototype, access only inside CERN GPN

• Short term plans

‣ plans for the next year and man power

• Link to previous presentations….

‣ Tim workshop in Genova, https://indico.cern.ch/event/342881/session/9/contribution/21/attachments/1159952/1669544/Report_from_DB_TIM.pdf

‣ CHEP 2015, http://indico.cern.ch/event/304944/session/3/contribution/5/material/slides/0.pdf

http://www.apple.com
https://indico.cern.ch/event/342881/session/9/contribution/21/attachments/1159952/1669544/Report_from_DB_TIM.pdf
https://indico.cern.ch/event/304944/session/3/contribution/5
http://indico.cern.ch/event/304944/session/3/contribution/5/material/slides/0.pdf

Conditions database for Run3A.Formica: Berkeley TIM

present infrastructure
• COOL API

‣ COOL API was developed in C++, and used as a client library to access tables
inside Oracle, Sqlite (& MySQL?)

‣ Successfully used during Run1 and Run2

• DB schemas today

‣ One schema per system (~20x2 in total, online/offline)

‣ N (~4) tables per payload type (the COOL node)

‣ COOL DB instances for MC and Data (and monitoring)

‣ Metadata(Nodes, Tags, Iovs) + Payloads

• Architecture

‣ client-server model not scalable enough for large grid processing model

- we have added an intermediate server (Frontier) to handle DB requests in distributed
computing (caching of data is essential)

Conditions database for Run3A.Formica: Berkeley TIM

some caveat…
• Global Tag integration…

‣ sort of “addons” to COOL, implemented today via cumbersome parent-child links

• …and protection mechanism (UPDx)

‣ this is completely outside the DB, and is implemented via python scripts

• payload choice

‣ lot of flexibility was asked to COOL API, and then used in our code, ending up with ad hoc

solutions for every system (CLOBs, BLOBs, DB standard types, urls to POOL files,…)

‣ in general, data formats have been never documented and are bound to one language

• Metadata and DB organization

‣ we know pretty well today what are the main metadata needed for Conditions Data

management: the concepts of Global Tags, Tags, and Iovs are important for our data flows.

‣ DB is today pretty large: ~20x2 schemas, ~1000 Nodes => ~4000 tables for 1 DB instance
(e.g. CONDBR2) and the total volume sums up to something like 1.5 TB for Run1

‣ DB administration of large amount of schemas and tables can be a problem in the long term.

Conditions database for Run3A.Formica: Berkeley TIM

..and other uncertainties
• COOL maintenance

‣ rely essentially on one person (A.Valassi) from IT

‣ this is true for Coral as well

• DB platforms

‣ even if abandoning Oracle is not an option for the moment

we have to be careful in relying too much on it

‣ adding additional support for new DB platforms (e.g.
Postgresql) in Coral is a new development

Conditions database for Run3A.Formica: Berkeley TIM

present architecture
• Architecture

‣ client-server model being not suited for grid processing we have
added an intermediate server, providing a REST access to DB content

Event processing

Relational
DB

Software
Framework

Coral
CoralFrontier

Cool

Tomcat

Frontier

JDBC

WEB

SQUID cache

• Frontier model (READ-only, based on HTTP, allows Squid caching)

‣ the middle-tier server sends generic (select) queries via JDBC

‣ the output is packed in XML blobs, containing the whole ResultSet from the query

‣ client libraries (COOL+Coral+CoralFrontierPlugin) are used to generate the
queries and parse the output

Conditions database for Run3A.Formica: Berkeley TIM

proposal in short
• Extend the role of Frontier server for conditions data access

‣ multi-tier model architecture using a full REST interface to the DB storage system (GET, PUT,
POST, DELETE)

• Reduce the number of tables (from ~1K to ~10)

‣ highly simplify the DB administration tasks

‣ make payload storage opaque to the  
conditions server (a BLOB in the DB)

• Simplify the client side code

‣ no relational DB libraries: only HTTP

‣ messages from server to client are in JSON Event processing
Software

Framework

REST http client

Tomcat / JBoss

CondDB - Server

Persistency Module

Security Module

WEB

Other...

Relational
DB

SQUID cache

rest/tags/{id} : list info on tag <id>
rest/globaltags/{id}?trace=on : trace global tag <id>

expert/tags {tag-obj} : create a tag
expert/tags/{id} : delete tag <id>

GET:

POST:
DELETE:

GLOBAL TAG
name (unique id)
snapshot : used for versioning
insertion time
validity

GLOBAL TAG MAP
global tag name
tag name

IOV
time type (run/lumi, time, ...)
since : open intervals only
insertion time: versioning
hash: payload reference

TAG
name (unique id)
endOfValidiy : close last iov
insertion time: versioning
object type: serialization
record: client software

PAYLOAD
hash
BLOB: serialized objects

Conditions database for Run3A.Formica: Berkeley TIM

prototyping
• couple of machines

inside GPN

‣ aiatlas: 063 and 137

‣ DB: INTR (loaded with
metadata from COOL)

‣ caveat
- can be removed at any

moment !!

• Initial documentation
for testing

‣ swagger for (almost)

automatic generation

• python and C++ clients

‣ clients development is

on going- doc http://aiatlas062.cern.ch:8080/swagger/
- code https://gitlab.cern.ch/formica/PhysCondDB

http://aiatlas062.cern.ch:8080/swagger/
https://gitlab.cern.ch/formica/PhysCondDB

Conditions database for Run3A.Formica: Berkeley TIM

• Global Tags

‣ speed up resolution of associated tags from O(100) to 1 query

• IOVs: from since/until to since only (open ended)

‣ COOL: allow to “close” an IOV

‣ CondDB: always open-ended (only last IOV can be closed)

• Channels

‣ No channels: handled inside the payload

• Payload (from free to BLOB)

‣ Format to be defined, CondDB server and DB are not aware of payload content

‣ impact at client level

main differences

queries more simple
no holes in the time line

cannot update only 1 channel

opportunity to define data formats
payload are loaded only on demand

cannot perform payload queries

Conditions database for Run3A.Formica: Berkeley TIM

core software
• IOVDbSvc

‣ having open-ended IOVs implies that we should query a “large”
number of IOVs (similar to the present caching mechanism in any
case…) at job initialization

‣ CMS uses the concept of “pages” to minimize the amount of data
loaded in the system
- only IOV pages are loaded at init
- one page is used then to access the full list of IOVs

• AttributeLists and similar

‣ we should simplify this part: today we have many attributelists - like

objects (one should be enough !)

Conditions database for Run3A.Formica: Berkeley TIM

development plans

• Focus is on prototype:

‣ we need to push the exercise far enough before taking a final decision on how to proceed at the end of 2016

• DAQ and DCS (today the main user of single version folders in COOL, and also main contributor to
our conditions data volume inside Oracle)

‣ start exploring alternative solutions for the DB part while also testing the proposed schema

‣ may be have a look to what CMS is doing for DCS ?

• Trigger

‣ we should start studying the existing Frontier+Squid solution and see where are the limitations

• Monitoring

‣ start developing something already useful in today’s infrastructure

WP1-3: dev. prototype
Daq Dcs: storage studies
Trigger: Frontier testbed
Monitoring: dev prototype

Complete development
Start data migration

Validation
Tests

now
2016 2017 2018…. R3

Conditions database for Run3A.Formica: Berkeley TIM

summary
• Prototype development for new conditions data architecture (for R3) is on

going together with CMS

‣ collaboration with CMS database coordination for sharing informations and gather

feedback is essential since they are already using in production the new DB schema

• Validation of the prototype is foreseen in one year from now

‣ this implies that we also need core software components to be ready in order to test

the full chain for few systems
- IOVDbSvc (and related components) should be re-written : major development to perform

in coordination with the activities on the new Athena Hive framework (understand multi-
threading issues)

- Payload serialisation needs to be explored : this is also a major aspect of the future system

• Other studies

‣ we need in parallel to follow up on all usage of the conditions, e.g. DCS, Trigger, …to

guarantee that the DB schema and the architecture do fit all our needs

Conditions database for Run3A.Formica: Berkeley TIM

use cases
• Validate the coverage for existing use cases

‣ support existing data flows: online / offline

‣ montecarlo productions

‣ local mode : allow users to deploy a conditions server for their own testing (the
substitute of the present sqlite usage)

• Additional use cases

‣ user analysis calibrations (today handled separately from Conditions database)

- we already started to explore needed functionalities together with Will and Attila

• Special cases (to be studied carefully !)

‣ DAQ and DCS: single version conditions 

How do they fit in the present and proposed architecture ?

‣ TRIGGER: special requirements in data access and caching  
Can we replace the present CoralServer caching architecture ?

