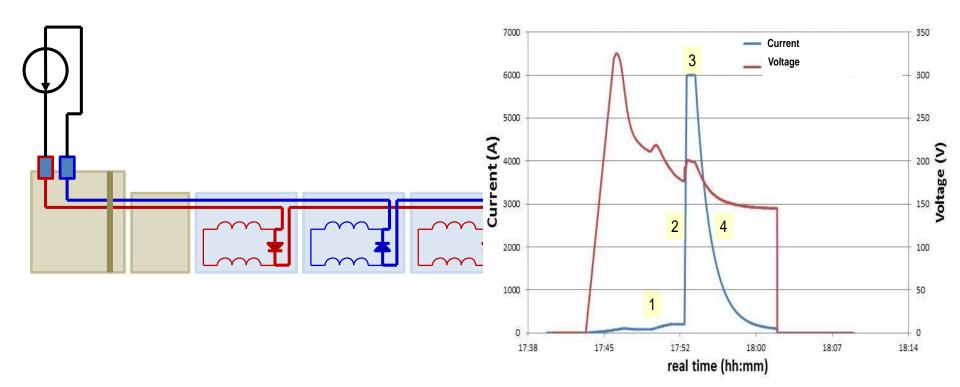


MPE Activities within CSCM

MPE LS1 Review

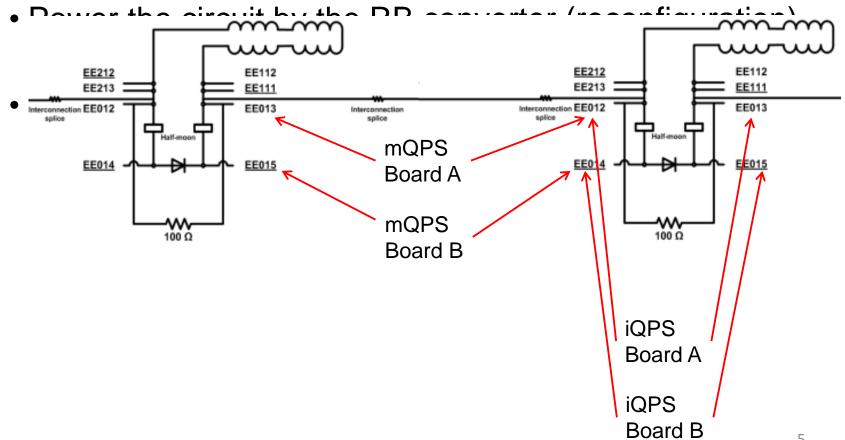
2 June 2015



- The objective of the CSCM tests was the qualification of the "13 kA bus bar systems" before the powering tests at 1.9 K including joints, lyras, diode leads and diodes
- Due to the limited resources (TE/MPE), TE-MB and LSC has approved the 6th December 2013 the CSCM tests:
 - In 3 sectors (S67, S78 and S81), but finally 2 sectors were planned (S67 and S81)
 - Only for RB circuits

CSCM tests

- Stabilized the magnets at 20 K / 5 bar
- Keep the DBFAs at nominal condition (4.5 K / 1 bar)
- Power the circuit by the RB converter (reconfiguration)
 - Current cycles at 2 kA, 5 kA, 7 kA, 8.6 kA, 10 kA and 11 kA


CSCM tests

- Stabilized the magnets at 20 K / 5 bar
- Keep the DBFAs at nominal condition (4.5 K / 1 bar)
- Power the circuit by the RB converter (reconfiguration)
 - Current cycles at 2 kA, 5 kA, 7 kA, 8.6 kA, 10 kA and 11 kA
- Protection and Measurement by QPS electronics
 - Normal electronic for the DFBA,
 - iQPS for magnets and diodes
 - mQPS for busbars, lyras and diode leads

CSCM tests

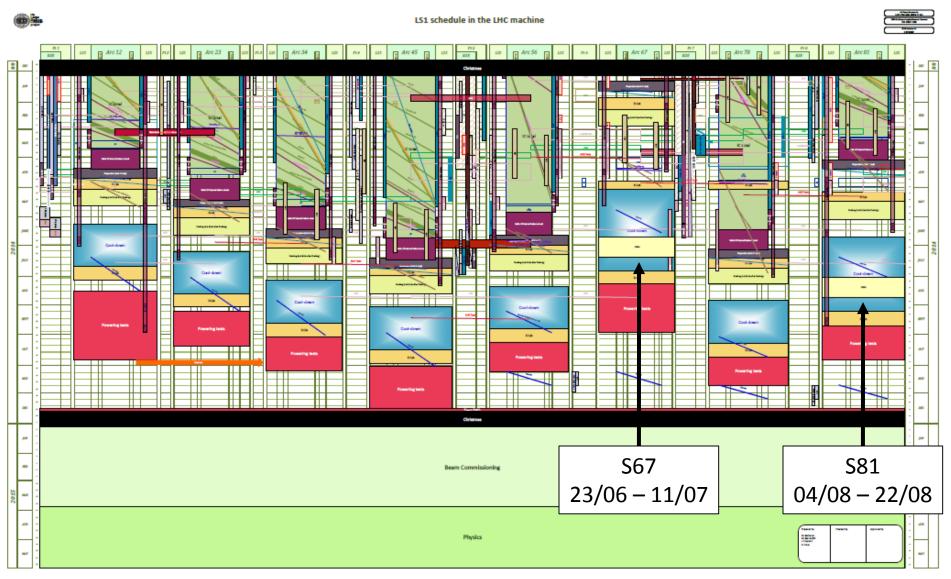
- Stabilized the magnets at 20 K / 5 bar
- Keep the DBFAs at nominal condition (4.5 K / 1 bar)

- Installation of QPS systems
- Modification of RB power converter
- Cool down 300 K to 20 K
- Stabilization at 20 K
- IST of QPS system
- EIQA at 20 K

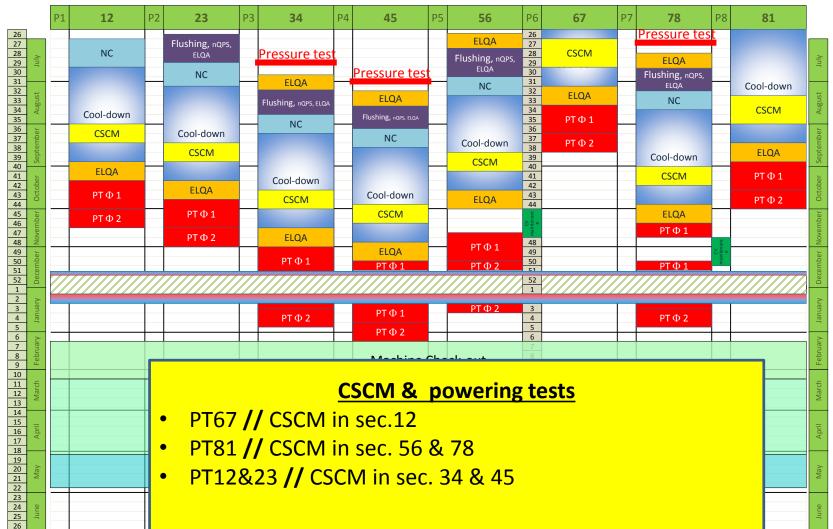
1 week

2 weeks

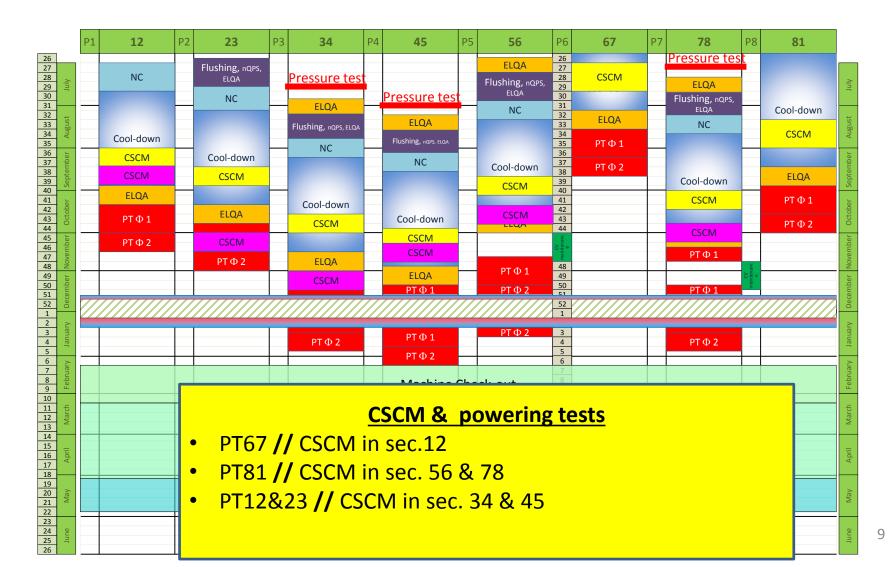
CSCM test campaign


- Interlock Tests
 - PIC test w/o current
 - PC setting and QPS setting
- Powering cycles
 - Qualification of 13 kA bus bar system
- EIQA after CSCM
 - Check after CSCM power cycles
- Cool down to 1.9 K

CERN



• Two sectors were planned before LS1



• The 6 other sectors were planned during LS1 (see LMC 182 and 183 June and July 2014)

CSCM tests have been realized "as planned"

- The lack of resources has been identified before LS1 (mainly for MPE)
 - Only 2 sectors were planned before LS1
 - When the CSCM tests have been approved for the 6 other sectors the concerned group leaders have given their constraints
 - Impact on the resources
 - CSCM tests needed mainly specialists
 - CSCM and Powering Tests (PT) were realized in parallel
 - Impact on the planning
 - Powering tests were delayed
 - Same specialists for CSCM and PT

- CSCM tests have generated extra activities without extra resources
 - EP section (3 man*month)
 - Development and test of safety critical firmware for hybrid detection boards type mDQQBS
 - Adaption of functional test system for testing new functionalities
 - Programming and test of 1248 circuit boards type mDQQBS
 - Procurement and test of additional circuit boards to cover all 8 RB circuits (500 boards – RQ circuits are not cover)
 - Update of QPS controls to access new functionalities required for CSCM
 - Commissioning and operation of CSCM

- CSCM tests have generated extra activities without extra resources
 - Core team (>12 man*month)
 - Arjan, Felix, Jens and Zinur for preparation, operation (6 months) and analysis
 - Other teams (>6 man*month)
 - EM section for the procurement and test of 500 additional mDQQBS circuit boards
 - EIQA experts for HV tests before and after CSCM tests
 - Ivan for software and PIC
 - Vincent and field team for interventions

- The CSCM tests were a success despite the constraints
 - The 8 sectors have been tested
 - The planning has been respected
 - Short time to organize the tests in the last 6 sectors
 - Survey in // with the tests
 - "Unexpected" cryo cooling performance
- Implication of the persons
 - Good team spirit
 - Time flexibility of the persons (8:00:AM to 8:00:PM)
 - Important support of BE/OP and MP3
 - Reactivity of the people

- MPE test coordinator: "He has greased the wheels"
 - Not directly involved in the tests
 - He anticipates the problems
 - Interface with the other groups specially with EN/MEF (planning)

00

Preparation

- Not clear strategy of MPE between CSCM/PT and mQPS/nQPS : few days before the first sector MPE has proposed to do the tests w/o QPS
- QPS IST were not in the EN/MEF planning
- Planning
 - Underestimation of the time needed for the activities
- Communication
 - Difficulty to get updated information and delay

....

Global organization

- CSCM tests require full operational sector:
 - All LS activities must be finished
 - Cryo, QPS and Power converter
 - CCC, ACCTESTING, Timber, PM and control system
 - EN/EL, EN/CV and ACCESS
- Preparation
 - Dry Runs has been planned but never done
- Tracking of the activities
 - Put in place a tracking tool to know where we are and to identify in advance what are the weak points
- Drink at the end

• Nothing!

- CSCM tests and Type test were different
 - Procedure
 - Software, firmware and hardware
- CSCM tests have been done by specialists
 - Procedure tests must be defined by MP3 as for the other powering tests
 - Preparation and test campaigns must be done by HCC as for the other powering tests
- RQ circuits have not be tested
 - nQPS boards
 - No procedure

