Late-time cosmology with eLISA

Nicola Tamanini

Institut de Physique Théorique (IPhT) CEA - Saclay - France

2nd eLISA cosmology WG workshop September 23, 2015

イター・イミン イミン

Plan of the talk

- \blacktriangleright eLISA and standard sirens
- \blacktriangleright Measuring distances (GWs)
- \blacktriangleright Measuring redshifts (EM waves)
- \blacktriangleright Forecasting eLISA accuracy for cosmology
- \triangleright Comparison with present constraints

 $4.171 - 8$

 \leftarrow \leftarrow \leftarrow

 $\alpha = 1$

 $\leftarrow \equiv +$

eLISA in one slide

- \triangleright Proposed space-based laser interferometer orbiting around the Sun in triangular formation
- \blacktriangleright Final design still under discussion:
	- ► 4 or 6 links $(L4, L6)$
	- ▶ 1 to 5×10^6 Km arms (A1, A2, A5)
	- \triangleright LISA pathfinder low frequencies acceleration noise (N2) or 10 times worse (N1)

Cosmology with eLISA

- \blacktriangleright How can el ISA be used to probe late-time cosmology?
- \triangleright What kind of information can we obtain?

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

E

Evolution history of the universe

Map the late-time expansion using the **distance to redshift** relation:

$$
d_L(z) = (1+z)\,\mathcal{G}\left(\int_0^z \frac{dz'}{H(z')}\right)
$$

- \triangleright z is the **redshift** (gives size of the Universe at time of emission)
- \rightarrow d_l is the **luminosity distance** (gives time of emission: $t = d_I/c$
- $H(z)$ is the **Hubble rate** (contains the cosmological parameters/information)
- In The function G depends on the **spatial geometry**

 $\rightarrow \pm \rightarrow$

∽ດເ

Fitting the distance to redshift relation

$$
d_L(z) = (1+z)\,\mathcal{G}\left(\int_0^z \frac{dz'}{H(z')}\right)
$$

- \blacktriangleright Fit the data with the theory
- \blacktriangleright Find constraints on the cosmological parameters

Exactly as for EM waves

Need independent measures of d_L and z to constrains the cosmological parameters in $H(z)$:

- \blacktriangleright Measuring redshift is easy: compare EM spectra
- \blacktriangleright Measuring distance is hard: need objects of known luminosity (standard candles) or objects of known length (standard rulers)

Mapping the evolution with GWs

Again need independent measures of d_1 and z, but observing GWs (which is hard by itself) turns the problem around:

- \triangleright Measuring distance is easy: from well-modeled sources of GWs (standard sirens)
- \blacktriangleright Measuring redshift is hard: need EM counterpart or other independent method

 \rightarrow \equiv \rightarrow

Theoretically well-modeled source of GWs: stellar binaries, neutron stars binaries, black holes binaries, ...

Expected in-spiral wave-form at observer (strongest harmonic):

$$
h(t) = \frac{M_z^{5/3} f(t)^{2/3}}{d_L} F(\text{angles}) \cos(\Phi(t))
$$

- \blacktriangleright dimensionless strain $h(t)$
- \triangleright GW phase $\Phi(t)$ and frequency $f(t) = (1/2\pi)d\Phi/dt$
- position and orientation dependence $F(\text{angles})$
- Figure redshifted chirp mass $M_z = (1 + z) \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$ $(m_1+m_2)^{1/5}$

What is a standard siren good for?

$$
h(t) = \frac{M_z^{5/3} f(t)^{2/3}}{d_L} F(\text{angles}) \cos(\Phi(t))
$$

- \triangleright Direct measure of distance d_L (and direction)
- \triangleright But no independent information on redshift z
- \triangleright Gravitation is scale-free: Wave-form from a local binary ($z = 0$) with masses (m_1, m_2) is indistinguishable from wave-form of a binary at redshift z with masses $\left(\frac{m_1}{1+z}, \frac{m_2}{1+z}\right)$ $\frac{m_2}{1+z}\right)$
- \Rightarrow Need independent measurement of **redshift** for cosmology

What standard sirens will eLISA hear?

- \triangleright Good mass coverage in range $10^4 - 10^7 M_{\odot}$
	- \triangleright SMBBHs
- \blacktriangleright Can detect sources up to $z \sim 10-15$
- \blacktriangleright Can determine sky location up to $1-10$ deg²
- \blacktriangleright Can determine d_1 with great accuracy: up to \sim 1%

Accuracy on d_L

What is the accuracy on the **distance** d_1 ?

- \triangleright Depends on the detector (specific eLISA design)
- \triangleright Might improve once an EM counterpart has been observed
- \triangleright Degrades due to inhomogeneities of the Universe
	- \blacktriangleright e.g. weak-lensing
- \Rightarrow need to characterize the **effects of inhomogeneities**

The error induced on d_L

The dominant contributions on d_1 due to inhomogeneities are:

- \blacktriangleright At small redshift: peculiar velocities
- \triangleright At high redshift: lensing (dominant for eLISA)

Other effects:

- \triangleright Change of position in the sky
- \blacktriangleright Change of observed orientation

Two ways of overcome lensing

There are mainly two ways to reduce the error due to weak-lensing:

- \triangleright De-lensing
	- \blacktriangleright Case-by-case reconstruction
	- \triangleright Weak-lensing maps
- \blacktriangleright Statistics
	- \blacktriangleright For a sufficient numbers of source, one can average away the effects of lensing

From GW sources we thus obtain the y-coordinates of our data (luminosity distance).

How do we find the coordinates on the x-axis (redshift)?

How to measure redshift?

- \triangleright Need good sky location accuracy from eLISA
- \triangleright Need to identify the **hosting galaxy** with an **EM** counterpart (large uncertainties for SMBBHs)
	- \triangleright Optical
	- \blacktriangleright Radio
	- \blacktriangleright X-rays
- \blacktriangleright Redshift measured only from optical light
	- \triangleright Spectroscopically (low magnitude high accuracy)
	- \blacktriangleright Photometrically

(high magnitude low accuracy)

イロン イ御ン イヨン イヨン

The big issue

 \blacktriangleright How many standard sirens will be detected by eLISA?

- \blacktriangleright How many SMBBHs are out there?
- \blacktriangleright For how many it will be possible to observe a counterpart?

 $4 - \frac{1}{2} + \frac$

つのへ

 $-$ m $+$

 \triangleright We are trying to answer all these questions

(in collaboration with E. Barausse, C. Caprini, A. Klein, A. Petiteau, A. Sesana)

- \triangleright Focus on 5 years eLISA mission (the more the better for cosmology)
- \blacktriangleright Realistic approach
	- \triangleright Likely SMBBH merger rate (though large uncertainties)
	- \triangleright Detection of EM counterparts using future telescopes
- \triangleright All results that follows are **work in progress**

Detecting GWs with eLISA

- \triangleright Start from simulating SMBBHs merger events using 3 different astrophysical models
	- \blacktriangleright Light seeds formation (popIII)
	- \blacktriangleright Heavy seeds formation (with delay)
	- \blacktriangleright Heavy seeds formation (without delay)
- \triangleright Compute for how many of these a GW signal will be detected by eLISA (SNR>8)
- Among these select the ones with a good sky location accuracy $(\Delta\Omega < 10\,\hbox{deg}^2)$

Detecting the counterparts

To detect the EM counterpart of an eLISA event sufficiently localized in the sky we use the combination $SKA + E-ELT$

- \triangleright **SKA** detects a first radio emission from the BHs and pinpoints the source in the sky
- \triangleright E-ELT will then focus in that direction to measure an optical counterpart from which the redshift of the source can be measured either
	- \triangleright Spectroscopically or Photometrically

Standard sirens with eLISA

E

Cosmology

Fit the data with a 5 parameters $\theta_i = (\Omega_M, \Omega_\Lambda, h, w_0, w_a)$ cosmological model giving

$$
H(z) = H_0 \left[\Omega_M (z+1)^3 + (1 - \Omega_\Lambda - \Omega_M) (z+1)^2
$$

$$
+ \Omega_\Lambda \exp \left(-\frac{3w_a z}{z+1} \right) (z+1)^{3(1+w_0+w_a)} \right]
$$

entering the distance to redshift relation

$$
d_L(z) = (1+z)\,\mathcal{G}\left(\int_0^z \frac{dz'}{H(z')}\right)
$$

御 ト イヨ ト イヨ トー

Example of simulated data

 \leftarrow \Box

 \mathbb{R}^2 \leftarrow \equiv \sim \equiv \rightarrow E

Example of possible real data

 $\leftarrow \Box$

 \equiv

重

E

Compute the Fisher matrix as

$$
F_{ij} = \sum_{n} \frac{1}{\sigma_n^2} \left. \frac{\partial d_L(z_n)}{\partial \theta_i} \right|_{\text{fid}} \left. \frac{\partial d_L(z_n)}{\partial \theta_j} \right|_{\text{fid}}
$$

Define a **figure of merit** (FoM) as

$$
\text{FoM} = \det(F_{ij})^{\frac{1}{2N}}
$$

As an estimate for the average standard 1σ error on the parameter one can take 1/FoM

ミュコミュ

FoMs for 5 parameters cosmology

 $4.171 - 8$

K 伊 ▶ (K ヨ)

 $\left\langle \cdot \right\rangle \geq 0$

 \equiv

FoMs for 3 parameters cosmology

 \leftarrow

A $\leftarrow \equiv$

 \sim

 $\leftarrow \equiv$

 \sim

 \equiv

FoMs for 2 parameters cosmology

イロメ イ部メ イヨメ イヨメー

 \equiv

 OQ

Contour plots for L6A5M5N2 (HS - no delay)

Nicola Tamanini [Late-time cosmology with eLISA](#page-0-0)

E

Standard 1σ errors for L6A5M5N2

 \Box

 \rightarrow \equiv \rightarrow

目

 Ω

Expected constraints by eLISA (L6A5M5N2)

- \triangleright Bad constraints for **5 parameters** cosmology due to degeneracy between $(\Omega_M, \Omega_\Lambda, h)$ and (w_0, w_a)
- Good constraints for **3 parameters** cosmology:
	- \triangleright Comparable to present constraints for Ω_M and Ω_Λ :

$$
\Omega_M=0.30\pm0.03\qquad \Omega_\Lambda=0.70\pm0.08
$$

 \triangleright Slightly better than present constraints for h

 $h = 0.670 \pm 0.004$ $(H_0 = 67 \pm 0.4 \text{ km/s/Mpc})$

 \triangleright Good measure of the **Hubble constant**

化重氮 化重氮化

∽≏ເ

Expected from eLISA (L6A5M5N2):

$$
\begin{cases} \Omega_M = 0.30 \pm 0.02 \\ \Omega_{\Lambda} = 0.70 \pm 0.02 \\ H_0 = 67.0 \pm 0.3 \, \mathrm{km/s/Mpc} \end{cases}
$$

From today CMB [Planck2015]:

$$
\begin{cases} \Omega_M = 0.3121 \pm 0.0087 \\ \Omega_{\Lambda} = 0.6879 \pm 0.0087 \\ H_0 = 67.51 \pm 0.64 \, \mathrm{km/s/Mpc} \end{cases}
$$

 $4.171 - 8$

メタト メミト メミト

目

 OQ

Comparing with Supernovae

Expected from eLISA (L6A5M5N2):

 $\Omega_M = 0.30 \pm 0.02$ $\Omega_{\Lambda} = 0.70 \pm 0.08$

From today SNe [Betoule et al (2014)]:

 $\Omega_M = 0.289 \pm 0.018$ (fixing curvature)

Nicola Tamanini [Late-time cosmology with eLISA](#page-0-0)

 Ω

What about dark energy?

 $4.171 - 16$ ϵ A \mathbf{p} $\left\langle \cdot \right\rangle$ \sim $\left\langle \cdot \right\rangle \equiv$ È

Contour plots for dark energy

 $w_0 = -1.0 \pm 0.1$ $w_a = 0.0 \pm 0.8$

- \triangleright Depends on the few data at low redshift (≤ 1)
- \triangleright Comparable with combined present constraints $(SNe+Planck+BAO)$ [Betoule et al (2014)], but not with future probes (e.g. Euclid)
- \triangleright Possible high redshift addendum to supernovae data

←ロメ (御) (き) (き)

 Ω

- ► SMBBHs are excellent **distance** indicators up to $z \sim 7$
- Need good eLISA configuration to reduce sky location error (6L or best of L4)
- \triangleright Need identification of EM counterparts for measuring redshift
- \triangleright Systematic-free (no calibration needed) sources
- \triangleright New cosmological measurements independent from EM

 \rightarrow \equiv \rightarrow

With eLISA we can measure (5 years mission):

- \triangleright Ω_M and Ω_{Λ} up to few % accuracy
- \blacktriangleright H₀ up to less than 1% accuracy
- \triangleright Dark energy EoS with low accuracy (though comparable to present SNe)

In other words:

- \triangleright Good probe of **matter dominated era** at high-z $(\Omega_M, \Omega_\Lambda, H_0)$
- ► Not-so-good probe of **dark energy dominated era** at $low-z$ (w_0, w_2)

- \triangleright Combine eLISA expected results with other probes (CMB, Supernovae, BAO, ...)
- \triangleright Consider other astrophysical models of SMBBH merger rate
- \blacktriangleright Find further realistic ways to detect counterparts (use other telescopes/EM emissions)
- \triangleright Analyse alternative cosmological models (modify gravity, interacting DE-DM, ...)

医骨盆 医骨盆的

THANK YOU!

イロメ イ団メ イモメ イモメー

 \equiv

 299