Input coupler activities at KEK

at CERN, 2015' June 23

Eiji Kako (KEK, Japan)

OUTLINE

Introduction of KEK couplers

• Lots of failure reports

Discussion Topics

I remind you the topics we agreed to talk about:

- Design: maximum power per coupler ? multi coupler per cavity ?
- Construction: choice of material and of techniques of construction, coating
- Series production: fabrication, cleaning, handling and assembly
- Series production by industrials: modification of the processes, industrial alternative proposals, ...
- Cleaning and assembly: which clean room is really needed ? For FPC alone? For FPC onto cavity?
- Tests: prototype processes versus series processes, RF test boxes, amplifiers for tests
- Statistics of couplers operated in accelerators
- Diagnostics during R&D and prototyping, versus diagnostics during operation in accelerators
- Degradation of characteristic over time of operation

Superconducting Cavities Developed at KEK

TRISTAN 508MHz 5-cell Cavity

<u>cERL Injector</u> <u>1.3GHz 2-cell Cavity</u>

KEKB 508MHz 1-cell Cavity

<u>1.3GHz 9-cell Cavity</u>

CERL ML

TRISTAN-type High Power Input Couplers at KEK

Original design : 508 MHz TRISTAN Input Coupler S. Noguchi, E. Kako, K. Kubo (4th SRF-WS, 1989)

972 MHz J-ADS Input Coupler (KEK)

1.3 GHz STF-1 Input Coupler (KEK)

1.3 GHz cERL Injector Input Coupler (KEK)

1.3 GHz STF-2 Input Coupler (KEK)

TRISTAN-type RF Windows

Tristan-type coaxial disk ceramics RF window with choke structure

RF windows after 1st brazing

Al₂O₃ ceramics with metalizing

High Power Performance of TRISTAN-type Couplers

Facility	Frequency	Window type Coupling	Maximum RF Power	
TRISTAN /KEK	508 MHz	1, Coax. Disk Fixed	Test-stand,200 kW, CWOperation,70 kW, CW	
KEKB /KEK (T. Mitsunobu)	508 MHz	1, Coax. Disk Fixed	Test-stand,800 kW, CWOperation,380 kW, CW	
J-ADS /KEK-JAEA	972 MHz	1, Coax. Disk Fixed	Test-stand, 2.0 MW, pulse Operation, 350 kW, pulse	
cERL-Inj. /KEK	1300 MHz	1, Coax. Disk Fixed	Test-stand,40 kW, CWOperation,10 kW, CW	
cERL-ML /KEK (H. Sakai)	1300 MHz	2, Coax. Disk Variable	Test-stand,40 kW, CWOperation,15 kW, CW	
STF-2 /KEK	1300 MHz	2, Coax. Disk Variable	Test-stand, 1.5 MW, pulse Operation, 450 kW, pulse	

Important Technical Issues for Input Couplers

- Ceramics window : material, purity
- Metalizing of ceramics
- Copper plating : thickness, RRR, adhesion, pits, uniformity
- TiN coating : thickness, uniformity
- Joining by Brazing
- Welding by TIG, Laser, E-beam
- RF properties
- Thermal characteristics
- Mechanical analysis
- Multipacting simulation
- Cleaning procedure
- Assembly in clean room

About 27 years ago in TRISTAN at KEK

508MHz, CW 50kW Input coupler with one warm window and water cooling

(at test stand, 1988')

In the initial stage, no TiN coating no Arc sensor

Importance of TiN coating and Interlock system

About 25 years ago in TRISTAN at KEK

Summary of RF window troubles during module-operation in TRISTAN (32, 5-cell cavities operated with beam; total 56 couplers tested)

Date	Cavity	Temp.	Status	Damage	Cure
1989, Jan.	11B #3	4.4 K	Conditioning	Crack	Disassembly of cryomodule
1989, Feb.	10B #1	4.4 K	Beam operation	Pin-hole	Replacement of coupler in tunnel
1989, Oct.	10B #1	300 K	Warm-up	Pin-hole	Replacement of coupler in tunnel
1990, Jan.	10D #2	4.4 K	Conditioning	Burnt PE disk	Replacement of coupler in tunnel
1991, Jan.	10C #3	4.4 K	Conditioning	Crack by serious arcing	Disassembly of cryomodule
1991, July	10A#2	4.4 K to 300K	Beam operation	Cooling water leaked into cavity	Disassembly of cryomodule

About 15 years ago in 972MHz couplers for J-ADS

Design Values ; Q_{ext} = 5x10⁵ Input RF Power = 300kW (Beam Current = 30mA)

⁽E. Kako: SRF03, TuP016)

Reflection = 800 kW

10 years ago: CW and Pulsed Input Couplers at KEK

1.3 GHz CW Input Couplers for cERL Injector Cryomodule

1.3 GHz CW Input Couplers for cERL Injector Cryomodule

1.3 GHz CW Input Couplers for cERL Injector Cryomodule

Lessons and learned from Cryomodule Operation

STF Phase-1

Four 9-cell cavities (2008')

4 x STF1 input couplers

Total 22 STF-1, -2 input couplers were fabricated and tested. **S1-Global** (4+4) 9-cell cavities (2010')

4 x STF2 input couplers

STF2 - Capture Cryomodule Two 9-cell cavities (2011')

2 x STF2' input couplers STF2 – CM1+2a Cryomodule Twelve 9-cell cavities (2015')

12 x STF2" input couplers

Four STF-1 Input Couplers after Disassembly

Leak check after Cryomodule Tests

Warm windows : No.1 Coupler, OK No.2 Coupler, OK No.3 Coupler, OK No.4 Coupler, OK

Cold windows (80K) :

No.1 Coupler, Leak rate = $2.x10^{-4}$ Pam³/s No.2 Coupler, Leak rate = $3.x10^{-5}$ Pam³/s No.3 Coupler, Leak rate = $4.x10^{-5}$ Pam³/s No.4 Coupler, OK

Leak at brazing of inner conductor after a few thermal cycles (not the first cool-down)

Cracks due to thermal strain at 80 K

Thermal cycle tests of improved structure

Broken TTF-3 input coupler during disassembly.

2011/11/10

Denis Kostin. S1-Global Module C couplers disassembly @STF/KEK

Discoloration of Cu plating in TTF-3 input couplers from DESY and FNAL

Discoloration of Cu plating: comments by company

- 1. Cu and Ag are usual metals to cause discoloration easily.
- 2. Especially, discoloration after plating is formed at hollow spots in a rough surface.
- 3. To avoid discoloration, copper pyrophosphate (Cu₂P₂O₇) for plating and chromate for surface-finishing were used in the past. Currently, special shiny copper pyrophosphate with additive free is used for KEK couplers.
- 4. To avoid discoloration, works after finishing Cu-plating are very important. Disassembly of the plating-jigs is immediately carried out in a hot pure-water bath at 40°C. After this, rinsing with methanol and complete drying in a hot wind furnace are carried out. Finally, surface of Cu-plating is covered by a special non-rust paper, and it is kept in a PE bag together with silica-gel for delivery.
- 5. In case of whole light discoloration, rinsing with weak sulfuric-acid and careful rinsing with pure-water are applied.
- 6. Discoloration is not so many troubles in this company. (in my experience)

Doorknob side (air)

A1/MHI-05 (no leak)

A1/MHI-05

(no leak)

Cold window (warm side)

A4/MHI-09 (no leak)

No visible mark due to discharge was found in four cold couplers.

Cold couplers

A2/MHI-06 (no leak)

A2/MHI-06

(no leak)

A3/MHI-07

(no leak)

A3/MHI-07 (no leak)

A4/MHI-09 (no leak)

WWFPC WS @ CERN, June 23-24, 2015

23

Eiji Kako (KEK, Japan)

Direct comparison of dynamic loss between TTF-3 and STF-2

Quality control of Cu-plating (1) : low RRR

Quality control of Cu-plating (2) : projection

Test piece with smooth surface

Test piece with micro-projections

Copper plating (20um)
Nickel plating (0.5um)
SUS316L
This figure is cross-section model of plating to sus316L

Micro-projection (φ100μm) were formed after brazing at 800°C. The cause was organic carbon contamination in an old solution.

Quality control of Cu-plating (3) : swelling

Smooth surface (Ni-strike)

Large size of swellings (ϕ 5-10 mm) were formed after brazing at 800°C. The cause was inadequate plating parameters on plating area (S) and volume of solution (V) in case of Au-strike: Large bath (V) for acid solution is important, because of constant current density.

LAL TTF-V Input Couplers conditioning at KEK

January, 2009

Assembly in clean room ; pumping ports & vacuum gauges

Baking at 130°C for 60 h

High Power Test Stand

Step 1 : Target for XFEL (Feb. 2009) 400 µs, 1.0 MW 1.5 ms, 0.5 MW, 5 Hz Step 2 : Target for ILC (Mar. 2009) 400 µs, 2.0 MW, 5 Hz Step 3 : Target for ILC (May. 2009) 1.5 ms, 1.0 MW, 5 Hz

LAL TTF-V Input Couplers conditioning at KEK

After disassembly, traces due to RF discharge were found.

CONCLUSION

- This WS is a very good chance to exchange our experiences and knowledge on fundamental power couplers (FPC).
- We should continue this kind of meeting by experts and beginners.

Thank you for your attention.