CHAPTER 5§

REPRESENTATIONS OF THE
SYMMETRIC GROUPS

The symmetric or permutation groups S, and their representations are important
for a number of reasons. First, recall that all finite groups of order n are subgroups
of S, (Cayley’s Theorem, Sec. 2.3). Knowledge of the representations of S, can,
therefore, be useful in the study of representations of other finite groups. Secondly,
as we shall see, the irreducible representations of S, provide a valuable tool to
analyze the irreducible representations of the important classical continuous
groups—such as GL(m), U(m), and SU(m) (m = integer)—through tensor analysis.
Furthermore, permutation symmetry is of direct relevance to physical systems
consisting of identical particles. Therefore, the study of group theory in both
mathematics and physics requires a reasonable familiarity with the representations
of S,.

We have discussed, in previous chapters, the representations of the simpler
symmetric groups S, (=C,) and S; for the purpose of illustrating general group
representation theory methods. In this chapter, we shall construct all inequivalent
irreducible representations of S, for an arbitrary n. Section 1 describes the one
dimensional representations of S, from two alternative points of view. The basic
tools for the general analysis are introduced in Secs. 2 and 3; they consist of Young
diagrams, Young tableaux, and the associated symmetrizers, anti-symmetrizers, and
irreducible symmetrizers. The case of S, is worked out in detail to illustrate the use
of these tools in a concrete example, and to motivate the general method. The main
theorems on the irreducible representations of S, are discussed in Sec. 4. It is shown
that the irreducible symmetrizers provide the necessary projection operators (called
idempotents) to generate all such representations on the group algebra space. In fact,
this method leads to the complete decomposition of the regular representation of S,.
The last section (Sec. 5) explores the power of the same symmetrizers applied to
another important area of group representation theory—the analysis of finite
dimensional irreducible representations of the general linear group GL(m). This
significant application of the Young symmetrizers is based on the intricate
complementary roles played by the two groups S, and GL(m) on the space of nth-
rank tensors in m-dimensional space. Tensors of specific symmetries and symmetry
classes, which have a wide range of use, are introduced. This section will provide the
basis for a systematic study of the representations of the classical groups to be given
in Chap. 13.

For the sake of clarity, we shall emphasize the precise presentation of the
methodology and the results rather than details of the derivations. To this end, most
of the technical material and lengthy proofs which are not needed in any other parts
of the book will be relegated to Appendix IV. For those who are mainly interested in
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the applications of Young tableaux, it will not be detrimental to skip these proofs
and take the stated theorems on faith. Since use is made of properties of idempotents
on the group algebra space in the discussion of the theorems, some knowledge of the
content of Appendix III is desirable. If a full understanding of the details is desired,
then Appendix III is a prerequisite and Appendix IV is a corequisite.

5.1 One-Dimensional Representations

Every symmetric group S, has a non-trivial invariant subgroup A, consisting of
all even permutations. (An even permutation is one which is equivalent to an even
number of simple transpositions.) This subgroup is called the alternating group. The
factor group S,/A, is isomorphic to C,. It follows that every S, has two one-
dimensional irreducible representations which are induced by the two represen-
tations of C,. [cf. Table 3.1] The first is the identity representation. The second
assigns to each permutation p the number (— 1)? which is 1 if pis “even” and —1if p
is “odd”. We shall refer to (— 1)? as the parity of the permutation p.

An alternative way of deriving the one-dimensional representations of S, is by
means of the idempotents (i.e. projection operators on the group algebra; cf.
Appendix III).

Theorem 5.1: The symmetrizer s = Z p and the anti-symmetrizer a = Z( —1)?p of

the group S, are essentially 1dempotent and primitive.

Proof: Using the rearrangement lemma, it is straightforward to show that gs =
sq = sfor all g € S,. It follows then that ss = n!s, and sqs = ss = n!s. According to
the discussions of Appendix III, s is essentially idempotent and primitive. Similarly,
for the anti-symmetrizer, we have qa = aq = (— 1)%a, which implies aa = n!a and
aqa = (—1)%n!afor all g € S,. The same result then follows. QED

According to Appendix II1.3, s and a generate irreducible representations of S, on
the group algebra. Since sqa = sa = 0 for all g € S,, the two representations are
inequivalent. The basis vectors of the irreducible representations are of the form
lgs) and |qa) respectively. But since gs = s and ga = (—1)%a for all g € S,,, both
representations are one-dimensional and the matrix elements are 1 and (—1)?
respectively. Thus we reproduce the previous results.

5.2 Partitions and Young Diagrams

In order to generate primitive idempotents for all the irreducible representations
of S, it is convenient to introduce Young Diagrams. We begin with the idea of
“partitions”.

Definition 5.1 (Partition of n, Young Diagram): (i) A partition A = {1;,4,,...,4,)}
of the integer n is a sequence of positive integers 4;, arranged in descending order,

whose sum is equal to n: 4; > 4,44, i=1,...,r — l;and ) A4;=n.
i=1
(i) Two partitions A, u are equal if A; = y; for all i.

(iii) 4 > u (4 < p) if the first non-zero number in the sequence (4; — y;) is positive
(negative).
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(iv) A partition A is represented graphically by a Young Diagram which consists of n
squares arranged in r rows, the ith one of which contains 4; squares.

Example 1: For the case n = 3, there are three distinct partitions: {3}, {2,1}, and
{1,1,1}. The corresponding Young diagrams are

(TT1 | and @ respectively

—

Example 2: For the case of n = 4, there are five distinct partitions: {4}, {3,1},
{2,2},{2,1,1}, and {1,1,1,1}. The corresponding Young diagrams are

|
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—
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There is a one-to-one correspondence between the partitions of n and the
classes of group elements in S,. Recall that every class S, is characterized by a
given “cycle structure” consisting of, say, v, 1-cycles, v, 2-cycles, ... etc. Since the
numbers 1,2,...,n fill all the cycles, we must have: n=v, +2v, + 3v; + - =
vi+va+-)+ @y +vs+)+(v3+ )+ . If we equate the parentheses
of the last expression to 4,,4,,4;,... etc,, clearly 4, > 4;,, and ) A; = n. Thus

]

A = {4;} is a partition of n.

Theorem 5.2: The number of distinct Young diagrams for any given n is equal to
the number of classes of S,— which is, in turn, equal to the number of inequivalent
irreducible representations of S,. [Cf. Corollary to Theorem 3.7.]

Example: For S;, the class {e} corresponds to v, =3, v, = v; = 0; the class
{(12),(23),(31)} to v, = v, = 1, v5 = 0; and the class {(123),(321)} to v, =v, =0,
vy = 1. The corresponding (4, 4,, 4;) are (3,0,0), (2, 1,0), and (1, 1, 1) respectively—
as given before.

Definition 5.2 (Young Tableau, Normal Tableau, Standard Tableau): (i) A Young
Tableau is obtained by filling the squares of a Young diagram with numbers
1,2,...,nin any order, each number being used only once;

(ii) A normal Young tableau is one in which the numbers 1,2,...,n appear in order
from left to right and from the top row to the bottom row;

(iii) A standard Young tableau is one in which the numbers in each row appear
increasing (not necessarily in strict order) to the right and those in each column
appear increasing to the bottom.

Example: ‘1‘ 2m, :1; 421 are normal tableaux and ; 2|4], ; i are standard

tableaux of _S:.

We shall refer to the normal Young tableau associated with a partition A by the
symbol ®,. An arbitrary tableau can be obtained from the corresponding @, by
applying an appropriate permutation p on the numbers 1,2,...,nin the boxes; hence
it can be uniquely referred to as ®%. Symbolically, we represent this relationship by:
®f = p@®,. It should be quite obvious that g ®@% = ©4F.
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5.3 Symmetrizers and Anti-Symmetrizers of Young Tableaux

To each Young tableau, one can define a primitive idempotent which generates an
irreducible representation of S, on the group algebra space. These idempotents are
constructed from corresponding “symmetrizers” and “anti-symmetrizers”, which, in
turn, are built from “horizontal” and “vertical” permutations. We introduce them in
logical order.

Definition 5.3 (Horizontal and Vertical Permutations): Given a Young tableau
©F we define horizontal permutations {h%} which leave invariant the sets of numbers
appearing in the same row of ®%. Similarly, we define vertical peermutations {v%}
which leave invariant the sets of numbers appearing in the same column of ®4.

It is easy to see that the cycles comprising a horizontal permutation h% must only
contain numbers which appear in the same row of the corresponding Young
diagram ©F. Likewise, the cycles in a vertical permutation v4 must only involve
numbers in the same column.

Definition 5.4 (Symmetrizer, Anti-symmetrizer, Irreducible Symmetrizer): The
symmetrizer s, the anti-symmetrizer a%, and the irreducible symmetrizer ef
associated with the Young tableau ©®4 are defined as:

sh = ;h’,{ (sum over all horizontal permutations);
al =y (—1)"v% (sum over all vertical permutations);

v
el = hZ(— 1)**hfv?  (sum over all h% and v%).

W

The irreducible symmetrizer e% will sometimes be called a Young Symmetrizer.
Example: We evaluate symmetrizers and anti-symmetrizers associated with the
normal Young tableaux of the group S;,

O, =[1]2[3]: Allpareh;;onlyeisav,. Hences, = Y ,p = s(symmetrizers of the
full group); a; = e;and e, =es=s

0, =[1]2]: Now, e, (12) are h;; e, (31) are v,. Hence s, =e + (12); a, =
K e — (31);and e, = s,a, = e+(12)—(31)—(321).
0, =[1]: Only e is a h;, all p are v;. Hence s; =¢; a; =) (—1)°p = a;
12] and e; = ea = a.
3]

Similarly, for the only remaining standard tableau,

O%¥ =[1]3]: Theh,aree,(31); thev, aree,(12); hences¥ = e + (31); aZ> =e
2] —(12); and 2 = e + (31) — (12) — (123).

Based on this example, we make a series of observations which will prove to be
useful for subsequent development.

[,

(i) For each tableau ©,, the horizontal permutations {h,} and the vertical
permutations {v,} each form a subgroup of S,,;
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(i) Sinces, and g, are the (total) symmetrizer and anti-symmetrizer of the respective
subgroups, they clearly satisfy the relations, s;h;, = h;s;, =s;, a,v;, =v,a; =
(—1)**ay; s;8;, = n;s;; a,a; = n;a; (where n; = A,!14,!---A,"). Thus s; and a; are
idempotents [cf. Appendix III]. They are, however, in general, not primitive
idempotents.

(iii) e, are primitive idempotents. Thisisevident fore, = sand e; = a. We leaveit as
an exercise [cf. Problem 5.3] for the reader to verify by explicit calculation that e,
and e$? are also primitive idempotents.

(iv) We already know that e, and e, generate the two inequivalent one-dimensional
representations of S;. Likewise, e, generates the two-dimensional irreducible
representation of S; mentioned in Chap. 3. [See Table 3.3 and Problem 3.5.] We
can verify that right multiplication by e, on p € S; generates a two-dimensional
subspace of the group algebra. Indeed,

ee, =e, (12)e, = e,

(23)e, =23)+ 32)—(123)—(12) =71,
Bhe, =Bl +(123) —e —(23) = —e, — 1,
(123)e, =(123) + (31) —(23) —e= —e, — 1,
(321)e, =(321) + (23) — (12) — (123) =r,

and the subspace (or left ideal) is spanned by e, and r,. (The choice of the basis
vectors, of course, is arbitrary.) We conclude that the symmetrizers of the normal
Young tableaux generate all irreducible representations of the group.

(v) Itis equally straightforward to verify that e'?2¥ also generates a two-dimensional
irreducible representation. It is, by necessity, equwalent to the one described above
(as S; has only one such representation). We note, however, the invariant subspace
(i.e. left ideal) generated by €% is distinct from the previous one. It is spanned by
e¥¥and r#¥ = (123) + (23) — (31) — (321); it does not overlap with any of the left
ideals generated by the other tableaux.

(vi) The four left ideals generated by the idempotents of the four standard Young
tableaux e,, e,, e¥?, and e, together span the whole group algebra space S,.
In other words, S; lS the direct sum of these (non-overlapping) left ideals. The
identity element has the following decomposition:

1 1 1 1
(5.3'1) e=5e1+§ez+3 123)+6
Thus, the regular representation of S is fully reduced by using the irreducible
symmetrizers associated with the standard Young tableaux.

5.4 Irreducible Representations of S,

Based on the experience with the S, example discussed above, we now develop the
central theorems of the theory of irreducible representations of S,. The sym-
metrizers and anti-symmetrizers associated with Young tableaux form the basis to
construct primitive idempotents according to the general method described in
Appendix III. To avoid obscuring the essential results by too many technical details,
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we relegate to Appendix I'V a number of lemmas whose sole use to us is to help prove
the following theorems. To simplify the notation, a superscript p to ©,, s;,a;,and e,
is omitted in most of the following discussions: all results apply to an arbitrary
Young tableau although the explicit notation may suggest a normal tableau.

Theorem 5.3: The symmetrizers associated with a Young tableau ®;, have the
following properties:

(5.4-1) s,;ra, = te;  foreveryreS§,
(5.4-2) el=ne,

where ¢ and 5 are two ordinary numbers. Furthermore, n # 0 hence ¢, is essentially
idempotent.

Proof: (i) Let h, (v;) be an arbitrary horizontal (vertical) permutation associated
with @,; it follows from simple identities established in Lemma IV.2 that,

hy(syray)v, = (hys;)r(azvy) = (syrvy) (= 1)

Lemma IV.5 then ensures that s;ra, = Ee;.

(i) Since e;2 = (s;a;)(s;a;) = s;(a; s;)a,, the first part of this theorem guarantees
that the right-hand side is proportional to e;. Hence ¢;> = yje;.

(ili) To check whether n = 0, we need to examine the proof of Lemma IV.5 in some
detail. As applled to the case at hand the factor 7 is equal to the coefficient of the
identity term in the expansxon of e;> =Y h,v,h,'v;/(—1)"*(— 1)"* in terms of group
elements. But since e is the common element of the two subgroups {v,} and {h,}, it
appears at least once in the expansion. Furthermore, if it occurs more than once in
the above sum, the contribution is always positive. Therefore the relevant coefficient
is always a non-vanishing positive integer, and e, is essentially idempotent. QED

Theorem 5.4: The “irreducible symmetrizer” e, associated with the Young tableau
0, is a primitive idempotent. It generates an irreducible representation of S, on the
group algebra space.

Proof: We already know ¢, is an idempotent. Making use of Theorem 5.3 above,
we easily establish
e;re;=s;(a;rs;)a; =¢e;
for all r € S,. By the criterion of Theorem III.3, e, is a primitive idempotent. QED
We remind the reader that in the previous section we have seen several examples
of these irreducible symmetrizers at work for the group S;: e, and e; for the one-

dimensional representations, e, and ¢%® for two equivalent two-dimensional
representations.

Theorem 5.5: The irreducible representations generated by ¢; and ¢,”, p € S,, are
equivalent.

Proof: This result can be established by applying Theorem II1.4. We simply note:
e;” =pe,p ',hencee;pe, = pe;p ' pe;, = npe, which is non-vanishing. QED

For an example of thlS result, we again recall the two-dimensional representations
generated by e, and % for S;.
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Theorem 5.6: Two irreducible symmetrizers e, and e, generate inequivalent
(irreducible) representations if the corresponding Young diagrams are different (i.e.
if A # p).

Proof: With no loss of generality, assume 4 > u. Let p be any element of S,, then
e,pe;=e,(pe;p )p=(e,ef)p=0
where the last equality is a consequence of Lemma IV.6. It follows that,
e,re; =0 forallreS,

as r is a linear combination of peS,. By theorem II1.4, the two primitive
idempotents e, and e, generate inequivalent representations. QED

We have seen, in the case of S;, that e,, e,, and e;—which are associated with
distinct Young diagrams—do generate inequivalent representations.

Corollary: If 4 # u, thenefel =0, forall p,qeS,.

When 4 < p, the result is proved in Lemma IV.6. When 4 > p, the proof is left as an
exercise [ Problem 5.4].

Theorem 5.7 (Irreducible Representations of S,): The irreducible symmetrizers
{e,} associated with the normal Young tableaux {©,} generate all the inequivalent
irreducible representations of S,.

Proof: This very important result is an obvious consequence of the following
observations:

(i) The number of inequivalent irreducible representations of S, is equal to the
number of Young diagrams [ Theorem 5.2];

(ii) There is one e; associated with each Young diagram (corresponding to the
normal tableau); and

(iii) Every e, generates an inequivalent irreducible representation [ Theorem 5.6].
QED

To conclude, we state without proof the theorem governing the complete
decomposition of the regular representation of S,. [ Boerner, Miller]

Theorem 5.8 (Deconiposition of the Regular Representation of S,): (i) The left
ideals generated by the idempotents associated with distinct standard Young
tableaux are linearly independent; (ii) the direct sum of the left ideals generated by all
standard tableaux spans the whole group algebra space S,.

5.5 Symmetry Classes of Tensors

An important application of the Young-tableau method and the irreducible
representations of S, concerns the construction and the classification of irreducible
tensors in physics and in mathematics.

Let V,, be a m-dimensional vector space, and {g} be the set of invertible linear
transformations on V,. With respect to the law of multiplication for linear
transformations, {g} forms a group commonly called the general linear group
GL(m, C). In this chapter, we shall refer to this group simply as G,,. Given any basis
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{li>,i=1,2,...,m} on V,,, a natural matrix representation of G,, is obtained by:

(5.5-1) gli> =1j>g"
where (g7;) are elements of an invertible m x m matrix (i.e. det g # 0).

Definition 5.5 (Tensor Space): The direct product space V,, x V,, x ==+ x V,
involving n factors of V shall be referred to as the tensor space and denoted by V7,.

Given a basis {|i)} on V,,, a natural basis for V, is obtained in the form:
(5.5-2) ligiy =iy = i) i) lin)

When no confusion is likely to arise, we shall refer to this basis simply as {|i),}. An
arbitrary element x of the tensor space V}, has the decomposition,

(5.5-3) |x>:Iiliz---i”>xili2"'in

where {x'12"in} = {x'0} are the tensor components of x. The above equation shall
often be abbreviated as:

(5.5-4) [x) = [i), x

Elements of the group G,, (defined on V,) induce the following linear
transformations on the tensor space V.

(5.5-5) gliy, =1j>.D(g"';,
where
(5.5-6) D(g)m(i} = gj'i, ghiz---gj"i,.

for all g€ G,,. It can easily be verified that {D(g)} forms a (n-m)-dimensional
representation of G,,, and that for any |x) € V7,

(5:5-7) gIx> = Ix,> = 12,7
where
(5_5-8) xg(j) — D(g)(j)mx(i)

where the simplified notation of Egs. (5.5-4)—(5.5-6) is used.

Independently, the symmetric group S, also has a natural realization on the
tensor space V). In particular, consider the mapping p € S, — p = linear trans-
formation on V/, defined by,

(5-5-9) plxy = Ix,,

where |x),|x,) € V; and

(5.5-10) X107 = xipyipa-eip,

In terms of the basis vectors {|i),}, the action of p goes as
G3-11) Plivia=iy) = liypips e igin) = lipe1D,

Therefore, if we write
(5.5-12) pliY, =1i>.D(p)y,
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then
(5.5-13) D(p)' Py = 811 se- Slns = §lrr -5

The last equality involves permuting the n §-factors by p. The reader should verify
that Eq. (5.5-9), or equivalently (5.5-11), does provide a representation of the group
S,. [Problem 5.5]

Both the representations discussed above, D[G,,] for the linear group and D[S, ]
for the symmetric group, are in general reducible. As S, is a finite group, we know
from the theorems of Chap. 3 that D[S,] can be decomposed into irreducible
representations. In fact, we shall see shortly that the irreducible symmetrizers
associated with Young tableaux provide an effective method to achieve this
decomposition. On the other hand, the group G,, is an infinite group. A general
reducible representation of G,, is not guaranteed to be fully decomposible. We shall
demonstrate, however, that the reduction of the tensor space V; by Young
symmetrizers from the S, algebra leads naturally to a full decomposition of D[G,,].
This interesting and useful result is a consequence of the fact that linear
transformations on V7, representing {g € G,,} and {p € S,} commute with each
other, and each type of operator constitutes essentially the “maximal set” which has
this property.

It is useful to bear in mind the above observation as we begin to establish the
relevant theory. The underlying principle behind these results is very similar to, and
in fact is a generalization of, the familiar facts that: (i) a complete set of commuting
operators on a vector space share common eigenvectors; and (ii) a decomposition
of reducible subspaces with respect to some subset of the commuting operators
often leads naturally to diagonalization of the remaining operator(s). We have made
use of this principle to diagonalize the Hamiltonian for a general one-dimensional
lattice by taking advantage of the discrete translational symmetry group. Similarly,
as is often done in the solution to physical problems involving spherical symmetry,
the Hamiltonian is diagonalized by decomposing first with respect to angular
momentum operators.

Lemma 5.1: The representation matrices D(G,,), Eq. (5.5-6), and D(S,), Eq. (5.5-13)
satisfy the following symmetry relation:

(5.5-14) DY, = DY,
12 - -'n
where {i =(ili2'--i")andq=< >eS.
Ul " ! 9192 4n

Linear transformations on V7, satisfying this condition are said to be symmetry-
preserving.

Proof: The equality follows from the product form of the matrix elements,
Egs. (5.5-6) and (5.5-13). The value of the products clearly does not depend on the
order in which the n-factors are placed. Permuting the n-factors by an arbitrary
element (q) of S, results in the simultaneous reshuffling of the superscripts and the
subscripts by the same permutation. QED

Theorem 5.9: The two sets of matrices {D(p), p € S,} and {D(g), g € G,,} commute
with each other.
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Proof: Consider the action of pg and gp on the basis vectors in turn:

(@) pglid>e=pljdn D(g)mm = |jp-17n D(g)m{i} =|jon P(g){j")(i) >
(1) gplide = glip-1>0 = 1j>a D@V, -1y = 17Da D(9) "

In the last step of (i) we made use of the fact that { j} are dummy summation indices,
hence can be labelled in any convenient way. In the last step of (ii) we invoked
Lemma 5.1. The equality of the right-hand sides of (i) and (ii) establishes the
theorem. QED

Example 1: Consider second rank tensors (n = 2) in 2-dimensional space (m = 2).
the basis vectors will be denoted by |+ + ), |+ — ), |— + ), and |— — ). Since the
group S, has only two elements, and the identity element leads to trivial results, we
need only to consider p = (12) € S, and its interplay with elements of G,. It is quite
straightforward to see that,

pglt £)> =plikyg'sg*s = ki>g*s g's =gplt £)
pglt F> =plikdg'sg"s =1kidg" s 9's = glF £) =gpl+ F).
These equalities hold for any element g € G,.

We shall now decompose the tensor space V}, into irred.cible subspaces with
respect to S, and G,,, utilizing the irreducible symmetrizers associated with various
Young tableaux of S,. As before, let @ be a particular Young tableau and e? be the
irreducible symmetrizer and L, be the left ideal generated by e;. The main results will
be: (i) a subspace consisting of tensors of the form r|a) for fixed |a) € VI, and
arbitrary re L, is irreducibly invariant under S,; (ii) a subspace consisting of
tensors of the form ef |a) for arbitrary « € V}, and fixed ©F are irreducibly invariant
under G,,; and (iii) the tensor space V% can be decomposed in such a way that the
basis vectors are of the “factorized” form |4, &, a) where 4 denotes a symmetry class
specified by a Young diagram, « labels the various irreducible invariant subspaces
under S,, and “a” labels the various irreducible invariant subspaces under G,,.

Definition 5.6 (Tensors of Symmetry ®7 and Tensors of Symmetry Class 1): To
each Young tableau ®% we associate tensors of the symmetry ©F consisting of {ef|a);
|y € V7}. For a given Young diagram characterized by 4, the set of tensors {re; |a),
reSs,, e Vi}lissaid to belong to the symmetry class A.

We first consider the subspace T, () consisting of tensors {re; |a), r € §,,} for a
given o).

Theorem5.10 (i) T,(«)isanirreducible invariant subspace with respect to S,; (ii) if
T,(«) is not empty, then the realization of S, on T,(«) coincides with the irreducible
representation generated by e, on the group algebra S,,.

Proof: (i) Let |x) € T,(«), then by definition,
|x) = re;la) for some r € §,,
hence,
plx) = pre;la) € T, (o) forallpes,

This means T,(«) is invariant under S,,.
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(i) Since T,(a) is not empty, we know e, |a) # 0. Let {r;e,} be a basis of L, then
{re;|a)} form a basis of T,(«). Hence, if

plries) =|prie;> = I"jez>D(P)ji onS§,
then,

prie;lay = rie, oy D(P)ji on T,(a)
for all p € S,. Hence the invariant subspace is irreducible, and the representation
matrices on T,(a) coincide with those on S,. QED

Let ®,_, = ED:II, then e, =) p/n! is the total symmetrizer. Since re, = e,

~ P
for all r € S,, the left ideal L, is one-dimensional. Correspondingly, for any given
element |a) in the tensor space V5, the irreducible subspace T (a) consists of all
multiples of e,|a). These are totally symmetric tensors, as it is straightforward to
verify:

(5.5-15) elayn! =Y plid,a® =Y |i,- )0 =1i),Y o«
p p p

hence the components are totally symmetric in the n-indices. The realization of S, on
T,(«) is the one-dimensional identity representation because all permutations leave
a totally symmetric iensor unchanged.

Example 2: Consider third rank tensors (n = 3) in two dimensions (m = 2). Four
distinct totally symmetric tensors can be generated by starting with different
elements of V4~3:

@ Jody=|+++> elod=|+++) =ls,1,1)
(i) Jod=|++—=> eld>=[l++-=D+[|+—+>+|-++>]/3=]s52,1)
(i) o) =|——+> elay=[——+>+[I-+-D>+[+——-113=I|s31)
) |y =|=—==> egfad =]———) =|s,4,1)

In the last column, we introduced the labelling scheme for these irreducible tensors
which was mentioned in the paragraph preceding Definition 5.6. This classification
is used extensively in the following discussions. Each of the above totally symmetric
tensors is invariant under all permutations of the S; group. Together, they represent
all totally symmetric tensors that can be constructed in V3; they are tensors of the
symmetry class s, where s represents the Young tableau with one single row. We shall
denote the subspace of tensors of the symmetry class s by T..

Can we similarly generate totally anti-symmetric tensors in V] ? We leave as an
exercise [Problem 5.6] for the reader to show that they exist only if m > n. The
total anti-symmetrizer is e, = ZP(— 1)? p/n!. Since pe, = (— 1)?e,, both L, and
T,(«) are one-dimensional, and the realization of S, on T,(«) corresponds to the one-
dimensional representation p — (—1)”.

Example 3: There is one and only one independent totally anti-symmetric tensor
of rank n in n-dimensional space, usually denoted by &. In two dimensions, its
components are £'2 = —g2! =1, ¢!! = ¢22 = (. In three dimensions, the compo-
nentsare ¢’ = 4 1according to whether (ijk) is an even or odd permutation of (123);
else, if any two indices are equal, then ¢ = 0.
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Example 4: Consider second rank tensors (n = 2) in m-dimensions (m > 2),
e iy = i) i=12,....m
elid> =[j> +1jidl/2  i#j
There are m(m — 1)/2 distinct anti-symmetric tensors, as
e, liiy=0
e iy =Ly —1jidl/2  i#j
Let us now turn to tensors with mixed symmetry.

Example 5: We return to 3rd rank tensors in 2-dimensions [cf. Example 2]. Con-

sider tensors with symmetry associated with the normal young tableau ®,_,,

and irreducible symmetrizer e,,, where

12
0, =3] and e, =[e+ (12)][e — (31)]/4

It is straightforward to show that two independent irreducible invariant subspaces

of tensors with mixed symmetry can be generated.

(i) By choosing |a) = |+ + — ), we obtain:
emlay =[e+ (I2I[|++->—|—++)]/4
=R2++->—-|-++>—-|+—-+>)4=Im1,1)
(2enla) =I2[++ > —|—++> —[+—+)]1/4
=R2+—-+>—|-++>—|++—->1/4=Im1,2)

and, for any r € S;, re,, |a) is a linear combination of the above two tensors. These
two mixed tensors form a basis for T;_,,(1).

(i) By choosing |a) = |— — + ), we similarly obtain:
emley =[2|——+)> —|+—=) — |-+ -11/4=Im21)
@Yenlay =[2|—+—=>—|+—=>—|—-—+>1/4=Im22)

as the basis for another irreducible invariant subspace of tensors with mixed
symmetry T, _,.(2).

The realization of the group S; on either T, (1) or T,,(2) corresponds to the 2-
dimensional irreducible representation discussed in Sec. 5.2 and described earlier in
Chap. 3 [cf. Table 3.3].

The two tensors of mixed symmetry |m,i, 1),i = 1,2 (first ones of the two sets
given above), are two linearly independent tensors of the form e, |a) with |a)
ranging over V. [ Problem 5.8] They are tensors of the symmetry ®,,. We call the
subspace spanned by these vectors T,,(1). T,,(1) is an invariant subspace under G,
since

gemlay = englay € Ty(1)

for all |a) € Vj,. One can also show that this invariant subspace is irreducible under
G,. [Problem 5.8]
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Similarly, the two tensors |m,i,2),i = 1,2 (second ones of the two sets) are two
linearly independent tensors of the form e?¥|a)>—as can easily be verified by
noting that (23)e,, = e{2¥(23). They are tensors of the symmetry ®{23. We denote
the subspace spanned by these tensors by T,,(2). T,,(2) is also invariant under group
transformations of G,, and it is irreducible. Together, the two sets {T,,(a),a = 1,2}
comprise tensors of the symmetry class m, where m denotes the Young diagram
(frame) associated with the normal tableau ©,,. For the sake of economy of indices,
we shall use “a” in place of the label “i” from now on; it is understood that the range
of this label is equal to the number of independent tensors that can be generated by
e;la> with |a) € V1.

We note that for the 8-dimensional tensor space V3, the use of Young
symmetrizers (in Examples 2 and 5) leads to the complete decomposition into
irreducible tensors |A,a,a) where A (=s,m) characterizes the symmetry class
(Young diagram); “a” labels the distinct (but equivalent) sets of tensors T,(x)
invariant under S,; and “a” labels the basis elements within each set T,(«), it is
associated with distinct symmetries (tableaux) in the same symmetry class. We have
4 totally symmetric tensors (Example 2) and 2 sets of 2 linearly independent mixed
symmetry tensors. The latter can be classified either as belonging to two invariant
subspaces under S; {T,(x), « = 1,2}, or as belonging to two invariant subspaces
under G, {T,,(a),a = 1,2}. The latter comprise of tensors of two distinct sym-
metries associated with ®,, and @,

Bearing in mind these results for V3, we return to the general case.

Theorem 5.11: (i) Two tensor subspaces irreducibly invariant with respect to S,
and belonging to the same symmetry class either overlap completely or they are
disjoint; (ii) Two irreducible invariant tensor subspaces corresponding to two
distinct symmetry classes are necessarily disjoint.

Proof: (i) Let T,(«)and T,(f) be two invariant subspaces generated by the same
irreducible symmetrizer e;. Either they are disjoint or they have at least one non-
zero element in common. In the latter case, there are s, s’ € S, such that

seylay = s"e; |

This implies, rse; |a) = rs’e; |B) for all r e §,,. When r ranges over all S,.sodors
and rs’. Therefore, the left-hand side of the last equation ranges over T,(x) and the
right-hand side ranges over T,( ), hence the two invariant subspaces coincide.

(i) Given any two subspaces T,(«) and T,(f) invariant under S,; their intersection is
also an invariant subspace. If T;(a) and T,(f) are irreducible, then either the
intersection is the null set or it must coincide with both T,(«) and T,(f). If A and u
correspond to different symmetry classes, then the second possibility is ruled out.
Hence T,(x) and T,(f) have no elements in common if 4 # u. QED

These general results permit the complete decomposition of the tensor space
V" into irreducible subspace T,(«) invariant under S,. As explained when working
on the the example of V3, we shall use « as the label for distinct subspaces
corresponding to the same symmetry class 4. The decomposition can be expressed as

(5.5-16) V=2 2T
D a®
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The basis elements of the tensors in the various symmetry classes are denoted by
|4,a,a) where a ranges from 1 to the dimension of T,(a). We can choose these bases
in such a way that the representation matrices for S, on T,(«) are identical for all a
associated with the same 4, or

(5.5-17) pli,aa) = |4,0,b) D,(p)’,

independently of a.

The central result of this section will be that the decomposition of V), according
to the symmetry classes of S,, as described above, automatically provides a
complete decomposition with respect to the general linear group G,, as well. We
have already seen how this worked out in the case of V3.

Theorem 5.12: If ge G, and {|A4,a,a)} is the set of basis tensors generated
according to the above procedure, then the subspaces T (a) spanned by {|4,a,a)}
with fixed 4 and a are invariant with respect to G,,, and the representations of G,, on
T’ (a) are independent of a: i.e.
(5.5-18) gl aay =14 p,a) D;(9)’,
Proof: (i) Givenre,|a) € T;(«) and g € G,,, we have

g(rey)la) = (re;)gloy € T;(g)

Hence, the operations of the linear group do not change the symmetry class of the
tensor, or

g|/1,a,a> = Maﬁ’b> Dx(g)ﬂbaa N

(ii) We now show that D,(g)is diagonal in the indices (b, a). To this end, we note, for
geG,andpeSs,,

gpu', a, a> =4 I'{’ a,c} D},(p)ca = ”“, )3, b> Dx(g)ﬂbac Dl(p)ca
and
pglhoay = pliB,c> Di(9)*w = |4 B,b> Di(p)’. Di(9) s

Since g p = pg (Theorem 5.9), the two product matrices on the right-hand sides can
be equated to each other. For clarity, let us designate quantities in square brackets as
matrices in the space of Latin indices, and suppress these indices. We obtain

(5:5-19) [Di(9)".1[Dx(P)] = [Di(P)1[D1(9)%.]

For given g, this equation holds for all peS,. According to Schur’s Lemma,
the matrix D,(g)?",, must be proportional to the unit matrix in the Latin
indices. QED

Theorem 5.13 (Irreducible Representations of G,,): The representations of G,, on
the subspace T'j(a) of V7, as described above are irreducible representations.

Proof: Even though the complete proof involves some technical details [ Miller],
the basicidea behind it is rather easy to understand: since G,, is, so to speak, the most
general group of transformations which commutes with S, on V},, on the subspace



