Absolute calibration of magnetic spectrometers by TOF

A. Margaryan, R. Ajvazyan, H. Elbakyan, S. Zhamkochyan Yerevan Physics Institute, Armenia P. Achenbach, J. Pochodzalla Institut fur Kernphysik, Johannes Gutenberg-Universitat, 55099 Mainz, Germany S. N. Nakamura, Y. Toyama Department of Physics, Tohoku University, Sendai 980-8578, Japan J. Annand Department of Physics and Astronomy, University of Glasgow, Scotland, UK

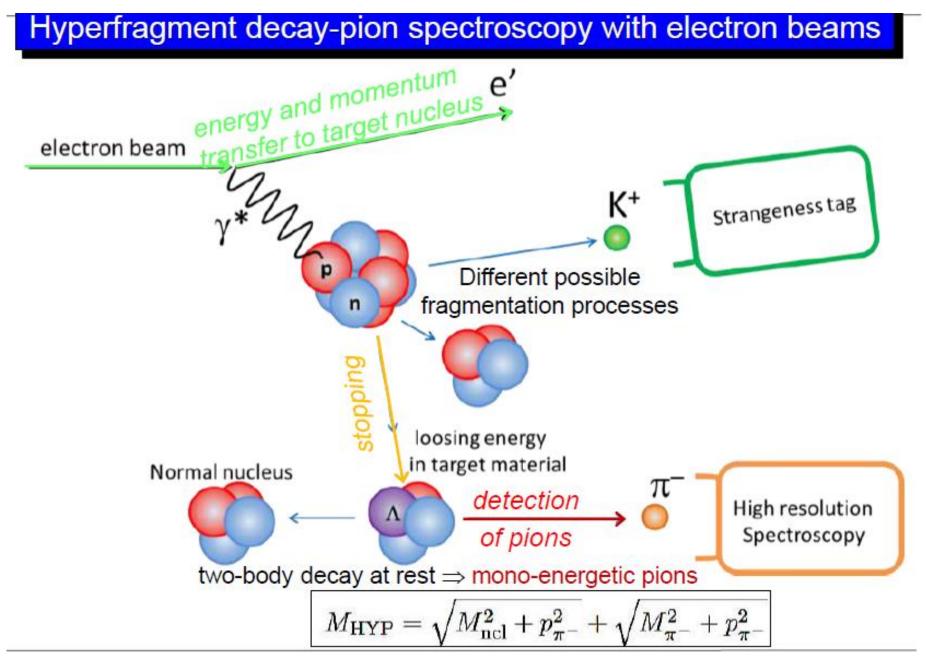
Picosecond Timing Workshop, Prague 8-9-10 June 2015

Outline

- Magnetic Spectrometer
- Hyperfragment decay pion spectroscopy at electron accelerators
- Magnetic spectrometer: absolute calibration by TOF
- Magnetic spectrometer: absolute calibration by (e,π) TOF difference
- A new picosecond timing technique with RF PMT based Cherenkov detector
- **Results of MC simulations**
- Summary

Magnetic Spectrometer

- Magnetic spectrometer is a basic equipment for momentum analizing in high energy nuclear and particle physics
- High resolution magnetic spectrometers can provide $\Delta p/p < 10^{-4}$
- High resolution: fine structure; new phenomena
- Absolute calibration of magnetic spectrometers typically is about 10⁻³
- High precision: check of theory

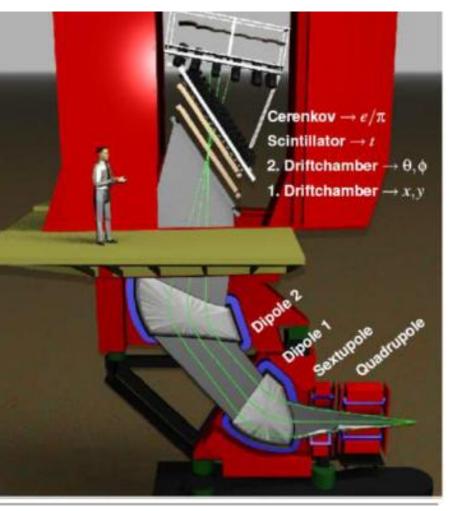

Hyperon Nucleon Interactions

YN	$\boldsymbol{B}_{\boldsymbol{A}}(^{3}{}_{\boldsymbol{A}}\boldsymbol{H})$	$B_{\Lambda}(^{4}_{\Lambda}H)$	$B_A(^4_AH^*)$	$B_{\Lambda}(^{4}{}_{\Lambda}He)$	$B_{\Lambda}(^{4}{}_{\Lambda}He^{*})$	$B_{\Lambda}(^{5}_{\Lambda}He)$
SC97d(S)	0.01	1.67	1.2	1.62	1.17	3.17
SC97e(S)	0.10	2.06	0.92	2.02	0.90	2.75
SC97f(S)	0.18	2.16	0.63	2.11	0.62	2.10
SC89(S)	0.37	2.55	Unbound	2.47	Unbound	0.35
Experiment	0.13 ± 0.05	2.04 ± 0.04	1.00 ± 0.04	2.39 ± 0.03	1.24 ± 0.04	3.12 ± 0.02

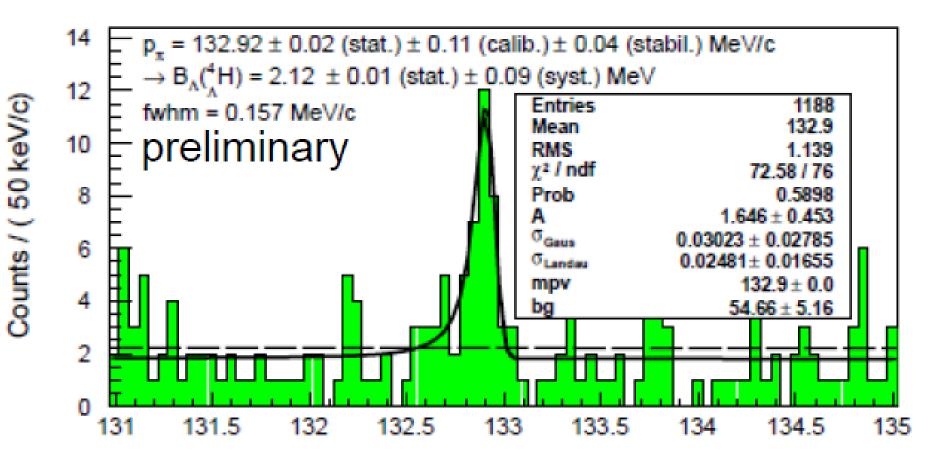
Accurate values of binding energies B_A of light hypernuclei is extremely important and needed for parameterization of the two body effective potential!!!

 $V_{\Lambda N}(r) = V_{c}(r) + V_{s}(r)(S_{\Lambda}^{*}S_{N}) + V_{\Lambda}(r)(I_{\Lambda N}^{*}S_{\Lambda}) + V_{N}(r)(I_{\Lambda N}^{*}S_{N}) + V_{T}(r)S_{12}$

High precision γ -spectroscopy has been successful for the spin dependent terms but unable to measure binding energies



Magnetic Spectrometers at MAMI, Mainz


Basics of Magnetic Spectrometer: $B\rho = p/q$, q-is known, ρ -is determined by traektory measurement with error 0.0001, B-is known with typical precision 0.001

Spectrometer	A	В	C
Configuration	QSDD	D	QSDD
Focussing properties			
dispersive plane	pt →pt	pt →pt	pt →pt
nondispersive plane	→pt	pt →pt	→pt
Maximum momentum [M	eV/c] 735	870	551
	sr] 28	5.6	28
Angular range	(charles)	-	
minimum angle	18°	7°	18°
maximum angle	160°	62°	160°
Momentum acceptance [%] 20	15	25
Angular acceptance			1.70
A STATE OF A	rad] ±70	±70	±70
	rad] ±100	±20	±100
	m] 50	50	50
Angle of focal plane	45°	47°	45°
Length of focal plane [m		1.80	1.60
Length of trajectory [m	A COLORED AND A COLORED AND A	12.03	8.53
	n/%] 5.77	8.22	4.52
Magnigfication (central)	0.53	0.85	0.51
Dispersion / Magnification [cr	n/%] 10.83	9.64	8.81
Momentum resolution	10^{-4}	10-4	10-4
angular resolution at target [m	rad] <3	≤ 3	≤ 3
position resolution at target [m	m] 3-5	1	3-5

[K.I. Blomqvist et al., Nucl. Inst. Meth. A 403 (1998)]

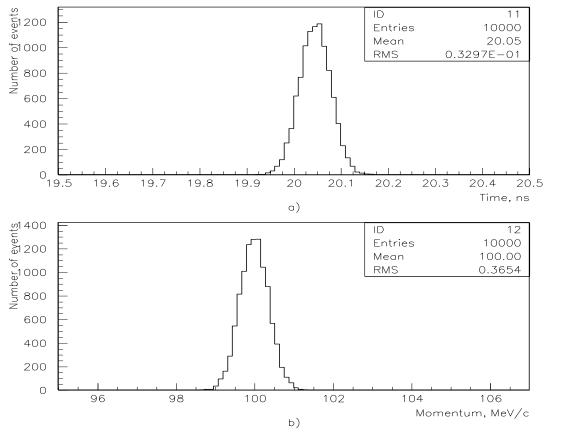
Binding energy extraction

Absolute calibration is realized by electron elastic scattering refering to beam energy

Depicted from P. Achenbach 2015, PRL

MS Absolute Calibration by TOF

From TOF concept for particles with identical flight length - L and p we have

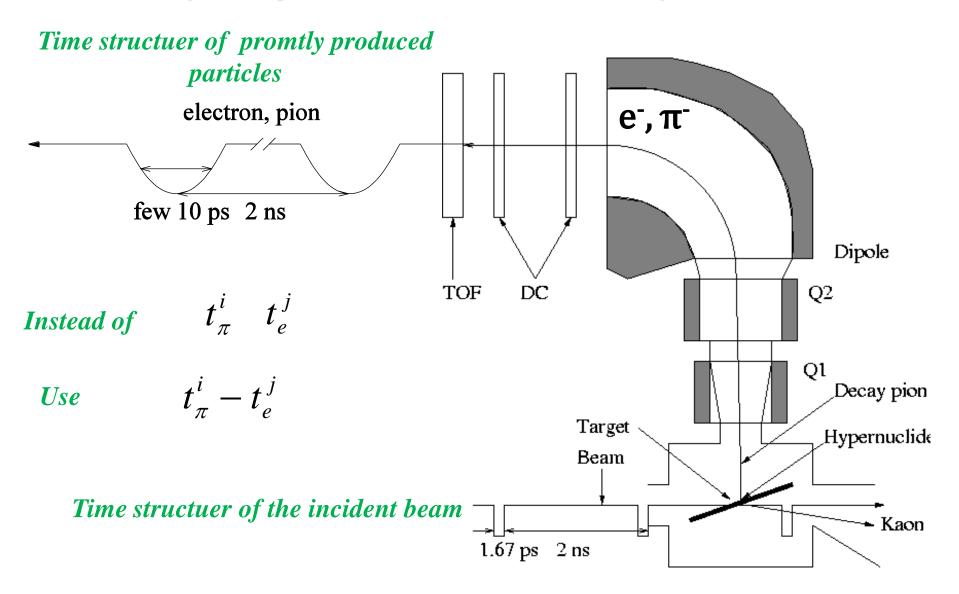

$$t_{\pi} = L/(\beta_{\pi}c) = (L/c)\sqrt{1 + m_{\pi}^2c^2/p^2}$$
$$t_e = L/(\beta_e c) = (L/c)\sqrt{1 + m_e^2c^2/p^2}$$

From these two equations

$$L/c = \sqrt{\frac{t_e^2 m_\pi^2 - t_\pi^2 m_e^2}{m_\pi^2 - m_e^2}}$$

$$p_{\pi} = (L/c) \frac{m_{\pi}c}{\sqrt{t_{\pi}^2 - (L/c)^2}}$$

 $H\pi S$ Calibration: MC simulation


Pion momentum can be determined by TOF measurement of prompt pions and electrons with in accuracy < 10keV/c in the momentum range

Pion momentum range $\leq 140 \text{ MeV/c}$

Incident parameters: $p_{\pi} = 100 \text{ MeV/c}$, $\sigma_p = 200 \text{ keV}$, L = 3.5 m, $\sigma_t = 20 \text{ ps}$.

- (a) Measured (simulated) 100 MeV/c pion TOF distribution
- (b) Pion momentum distribution (reconstructed from measured electron and pion TOFs)

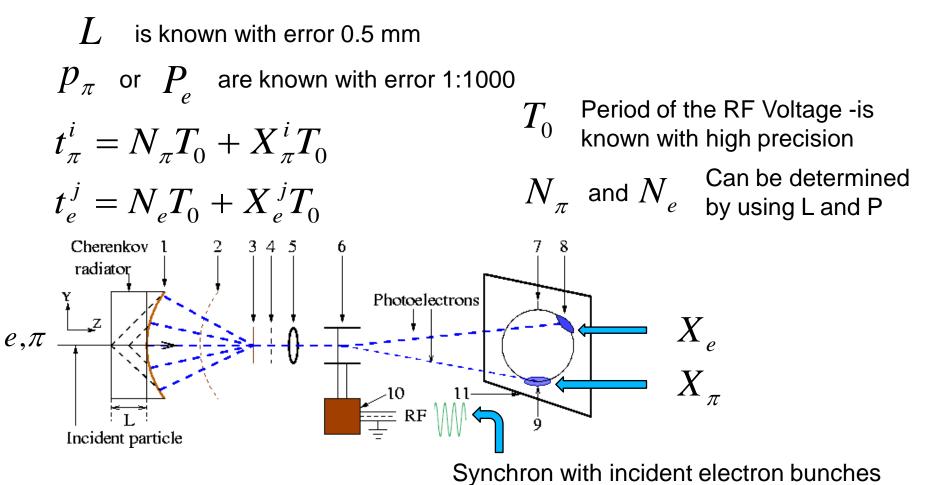
Decay Pion Spectrometer: Absolute Calibration by TOF Difference

Schematic of the experimental setup

MS Calibration by TOF Difference: Theory

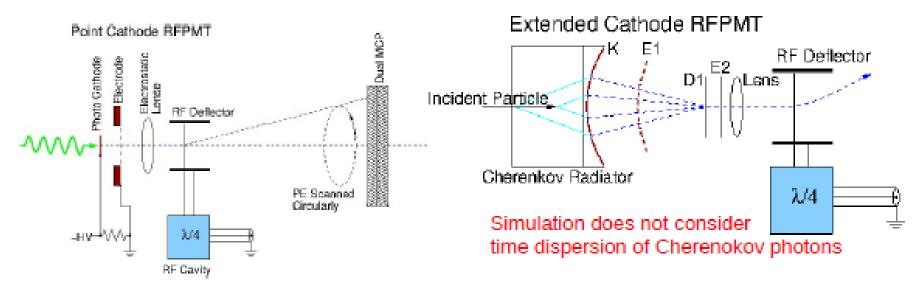
~

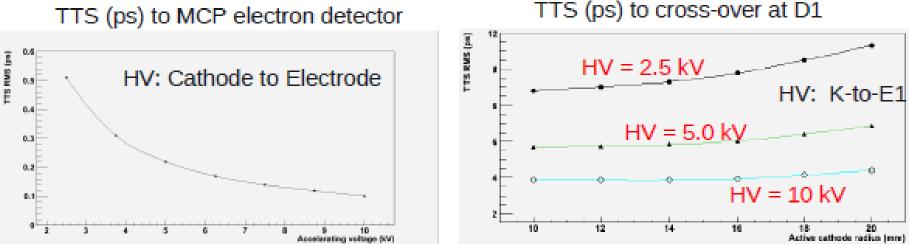
$$\left(\frac{L}{c}\right)^{2} = \frac{t_{e}^{2}m_{\pi}^{2} - (t_{e} + \Delta T_{\pi e})^{2}m_{e}^{2}}{m_{\pi}^{2} - m_{e}^{2}} \qquad t_{\pi} = t_{e} + \Delta T_{\pi e}$$


$$t_e^2 - \frac{2t_e \Delta T_{\pi e} m_e^2}{m_{\pi}^2 - m_e^2} - \frac{\Delta T_{\pi e}^2 m_e^2}{m_{\pi}^2 - m_e^2} - \left(\frac{L}{c}\right)^2 = 0$$

$$t_e = 0.5 \left(\frac{2\Delta T_{\pi e} m_e^2}{m_{\pi}^2 - m_e^2} \right) + \sqrt{D}$$

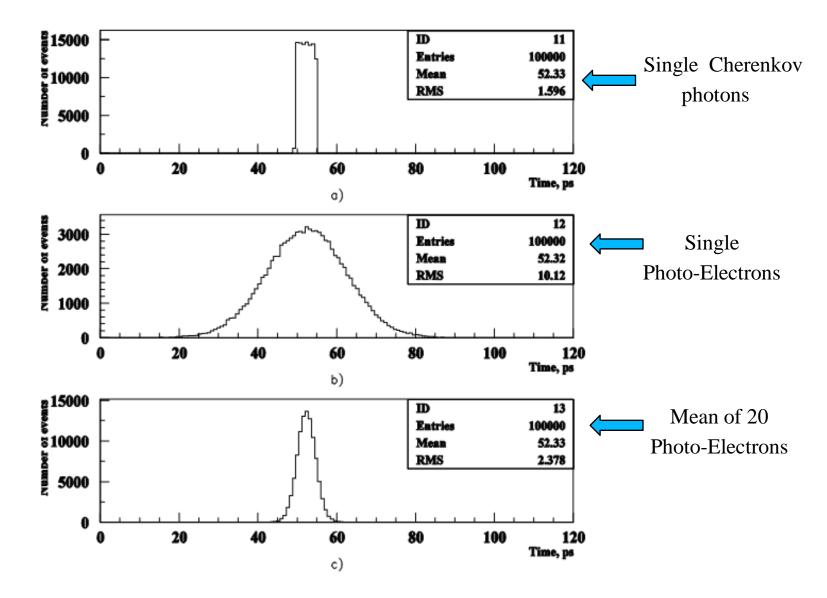
$$D = 4\Delta T_{\pi e}^{2} \left(\frac{m_{e}^{2}}{m_{\pi}^{2} - m_{e}^{2}}\right)^{2} + 4\left(\Delta T_{\pi e}^{2} \frac{m_{e}^{2}}{m_{\pi}^{2} - m_{e}^{2}} + (L/c)^{2}\right)$$

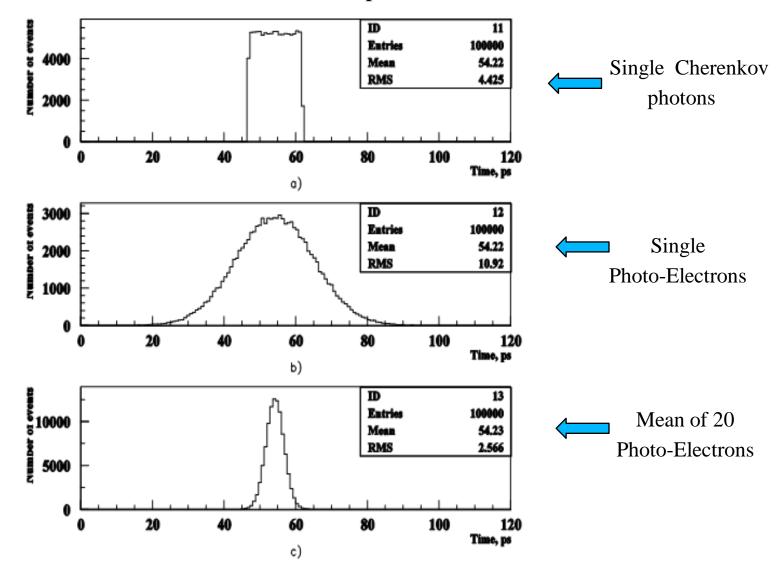

11


MS Calibration by TOF Difference Practical Implementation

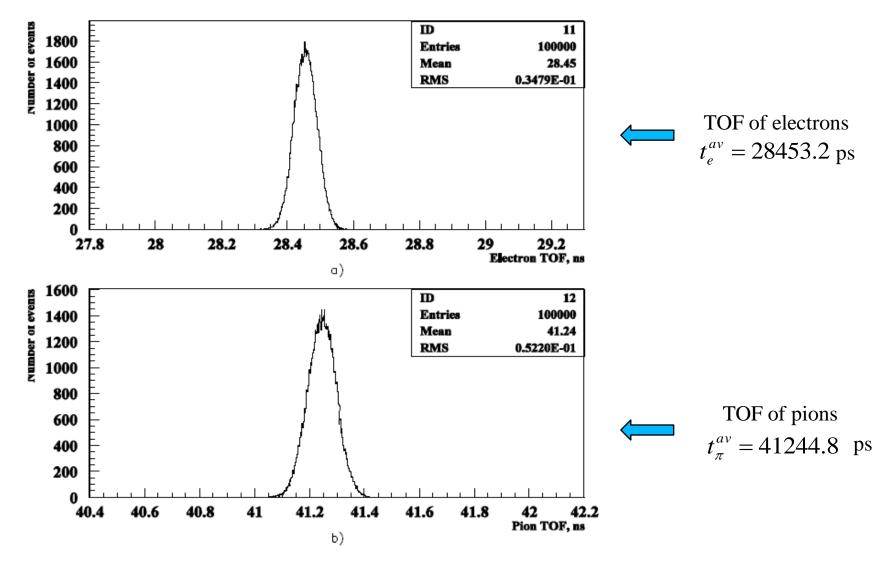
The schematic layout of the Cherenkov TOF detector with RF phototube

Simulation of Transit Time Spread (Simion-8: charged particle trajectories in EM fields)

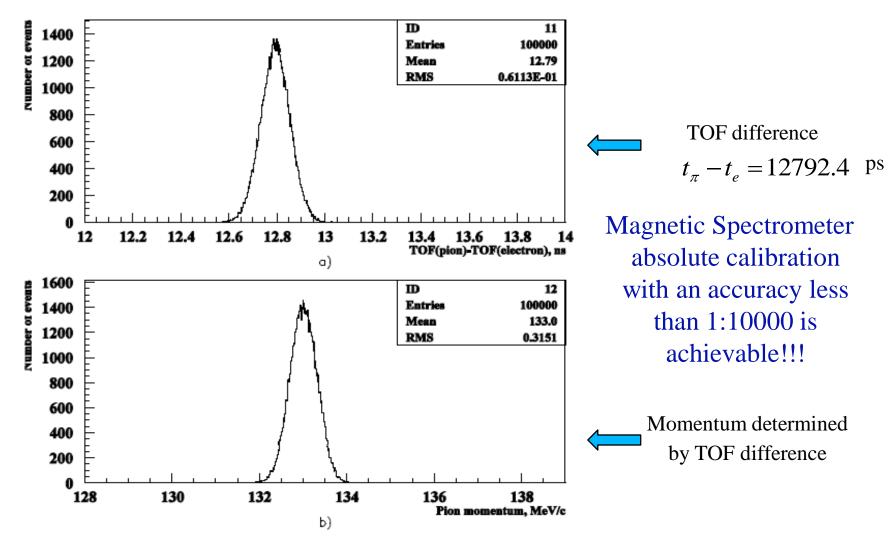



MC Simulation of the Cherenkov TOF Detector

- Radiator of finite thickness
- The transit time spread of Cherenkov photons due to different trajectories
- The chromatic effect of Cherenkov photons (n = 1.82 ± 0.008)
- The timing accuracy of RF phototube ($\sigma = 10 \text{ ps}$)
- The number of detected photoelectrons -100 cm⁻¹


Time distribution of Cherenkov detector: p = 133 MeV/c pions in 2mm PbF2

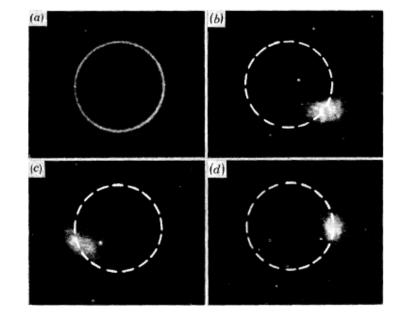
Time distribution of Cherenkov detector: p = 133 MeV/c electrons in 2mm PbF2



MC: TOF distribution of electrons and pions in a MAMI Spekt B

Spekt B: L = 853 cm , $\sigma_L = 1.0$ cm ; P = 133 MeV/c, $\sigma_p = 100$ keV/c.

MC: TOF difference and momentum distributions



Spekt B: L = 853 cm , $\sigma_L = 1.0$ cm ; P = 133 MeV/c, $\sigma_p = 100$ keV/c, $\sigma_t = 10$ ps

Phil. Trans. R. Soc. Lond. A **298**, 287–293 (1980) Printed in Great Britain

The Synchroscan picosecond streak camera system

By A. E. HUSTON AND K. HELBROUGH Hadland Photonics Ltd, Bovingdon, Herts. HP3 0EL, U.K.

Cherenkov radiation dedection by circular scan streak camera opereting in a Synchroscan mode

Time stability ~1ps/hrs

Average time is 10 s, each record is a result of summation of 2×10⁹ events

FIGURE 4. Records taken with circular scan Synchroscan. (a) Test record showing circular deflexion at 201.25 MHz, with continuous illumination. (b-d) Recorded Čerenkov light showing variation of timing obtained by altering the experimental conditions.

Summary

- Absolute calibration of magnetic spectrometers by TOF difference of pair of particles at RF driven accelerators is possible
- RF PMT based Cherenkov detector is a proper technique for such an application
- MC simulatuions demonstrated that the Magnetic Spectrometer absolute calibration with an accuracy ≤ 1:10000 is achievable
- Any pair of particles with different mass, such as (e,π) ; (e,K); (e,p) and etc, can be used. The momentum of one of particles

P ≤ mc

where m is a mass of the particle, c velocitiy of light.

Thank you for your attention