FA57

<u>Fast Advanced Scintillator Timing</u> A COST ACTION (TD14101)

Joao Varela, LIP Lisbon

Prague, 8-10 June 2015

WORKSHOP ON PICOSECOND PHOTON SENSORS

Objectives of Action

FAST is a multidisciplinary network that brings together European experts from academia and industry to ultimately achieve scintillator-based detectors with excellent time precision.

- Establish the ultimate achievable limits for fast timing for scintillators, photodetectors, electronics
- Facilitate the increase of competitiveness of European industry; provide input for future market applications
- Provide training opportunities for a new generation of scientific experts to strengthen their background in the field of fast timing detectors

Added Value of this COST Action

Enhanced synergies between partners through long term collaboration building

□ Access to network of experts and knowledge

Increased prospects for innovation in fast timing photodetection

Opportunities for new European research projects

List of 18 Proponents

CERN, Geneva (SWITZERLAND)

- Institute of Physics, Academy of Sciences of the Czech Republic, Prague (CZECH REPUBLIC)
- Institut Lumière Matière, University Claude Bernard and CNRS, Lyon (FRANCE)
- Centre de Physiques des Particules de Marseille (FRANCE)
- Forschungszentrum Julich GmbH, Julich (GERMANY)
- Justus-Liebig-University, Giessen (GERMANY)
- Aachen University of Applied Sciences, Aachen (GERManner)
- Università Politecnica delle Marche, Ancona (ITALY)
- University of Milano-Bicocca, Milano (ITALY)
- Center for Materials & Microsystems, Fondazione Bruno Kessler, Trento (
- **INFN** *Torino* (ITALY)

FA57

- Delft University of Technology, Delft (NETHERLANDS)
- LIP Laboratory of Instrumentation and Particles, Lisbon (PORTUGAL)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon (PORTUGAL)
- CIEMAT, Madrid (SPAIN)
- **University College**, *London* (UNITED KINGDOM)
- Philips Technologie GmbH, Aachen (GERMANY)
- PETsys medical PET imaging systems, Lisbon (PORTUG)
- Research Institute for Nuclear Problems, *Minsk* (BELARUS)
- Lomonosov Moscow State University, Moscow (RUSSIAN FEDERATION)

WG leaders

□ WG 1: Physics, Specifications & Coordination:

- WG Leader: Paul Lecoq
- Deputy WG leader: Denis Schaart

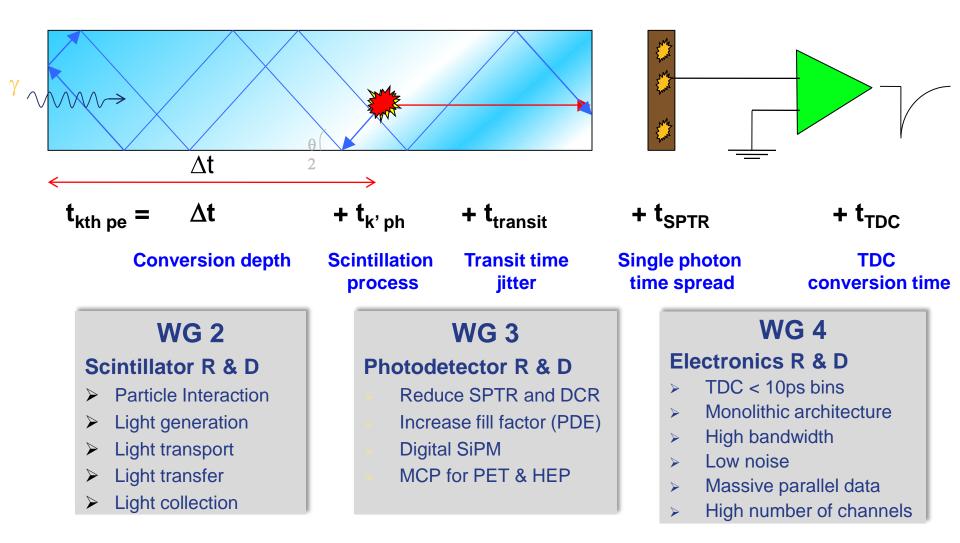
WG 2: Scintillators

- WG Leader: Martin Nikl
- Deputy WG leader: Christophe Dujardin

□ WG 3: Photodetectors

- WG Leader: Claudio Piemonte
- Deputy WG leader: Eduardo Charbon

□ WG4: Electronics


- WG Leader: Joao Varela
- Deputy WG leader: Christian Morel

□ WG5: Applications

- WG Leader: Pedro Almeida
- Deputy WG leader: Stefaan Tavernier

Technological areas

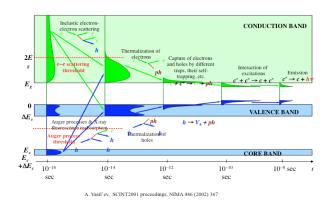
WG-2 Scintillators

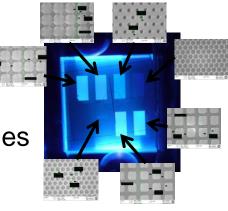
Objectives

Define and understand the key parameters to obtain the best timing properties:

- a) Fundamental understanding of scintillation mechanism
- b) Light production, light reabsorption, light transport and light collection

Study processes beyond the classical scintillation mechanism and useful for fast timing:

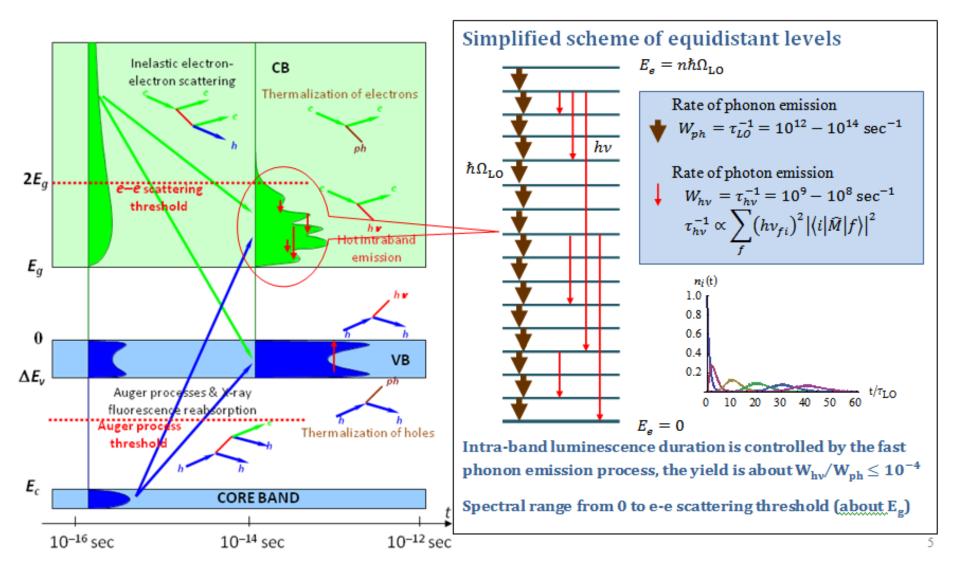

- Cherenkov radiation
- Intraband luminescence
- Absorption of free charge carriers
- Other processes occurring in the stage of hot carrier existence
- Quantum size effect in nanomorphological materials quantum wells and dots



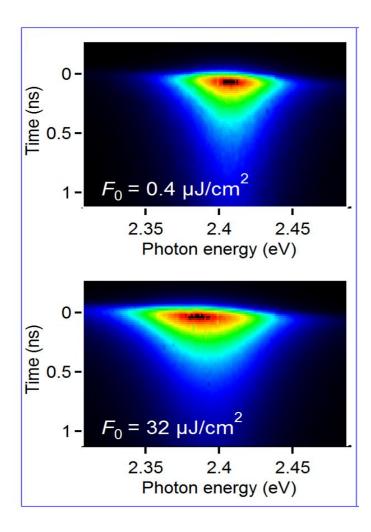
Factors influencing scintillator time resolution

The scintillator contributes to the time resolution through:

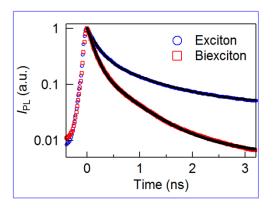
- 1. The scintillation mechanism
 - Light yield,
 - Rise time,
 - Decay time
- 2. The light transport in the crystal
 - Time spread related to different light propagation modes
- 3. The light extraction efficiency $(LY \rightarrow LO)$
 - Impact on photostatistics
 - Weights the distribution of light propagation modes

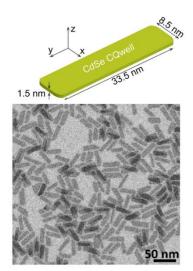


- Excitonic emission (STE, excitations of anion complexes)
- Emission of activators (Ce, Pr, ...)
- Emission of quantum dots
- Crossluminescence
- Intraband hot luminescence
- Cherenkov radiation



Scheme of intra-band luminescence





Properties of colloidal quantum wells

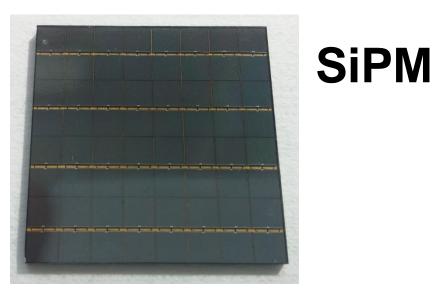
Exciton lifetime: **440 ps** Biexciton lifetime: **125 ps**

- 1D Quantum confinement implies strict selection rules
- In-plane delocalization implies fast exciton recombination rate (giant oscillator strength transition).
- Strongly suppressed Auger recombination in 2D CQwells.

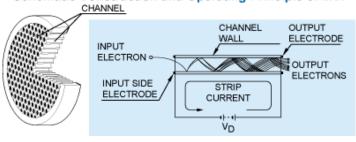
WG 3: photodetectors

State-of-the-art

Scintillator-based detector


Depending on scintillator and geometry we get a coincidence time res.: 80-200ps FWHM. All three elements have to develop together to reach ~10ps so it is very important to have interdisciplinary network.

 Scintillator-less detector we already have ~10-20ps FWHM with SPAD/MCP at the single-photon level.



Competing technologies

Schematic Construction and Operating Principle of MCP

SiPMs

FAST, Picosec workshop, Prague

State-of-the-art

	PMT*	SPAD	aSiPM	dSiPM	MCP
PDE	35% (blue)	70% (green)	~45% (blue)	~25% (blue)	35%
SPTR	200ps	20ps	200ps (3x3mm2)	180ps	20ps
Gain	1e8	1e6	1e6	-	1e6
DCR	<100 Hz/cm2	10Hz 100um	100 kHz/mm2	>1M Hz/mm2	<100 Hz/cm2
ENF	1.1	1.0x	1.1	?	1.05
Radiation hardness	Good	lower	lower	lower	Good
Reliability/Life	Good	Good	Good	Good	moderate
magnetic field tolerance	bad	Good	Good	Good	moderate
Temperature sensitivity	Good	Good	Good	Good	Good
8 June 2015	FAST, Picosec workshop, Prague			17	

FAST Possible improvements for the next future

	PMT	SPAD	aSiPM	dSiPM *	MCP
PDE	45%	70/80%	60-70%		45%
SPTR	100ps	10ps	<200ps (?)		
Gain	1e6	1e6	1e6		
DCR	100Hz	100Hz	~10kHz/mm 2		
ENF	1.05	1.0x	1.1		1.05
Size			L		200x200mm
SPAD/SiPM custom technology + high-end electronics					

Scientific goals of WG3 in the FAST project

Understand where we are and where we can go with the different photodetector technologies.

Promote networking to foster the technological development.

WG 4: electronics

Motivations

The development of electronics with picosecond time resolution is challenging

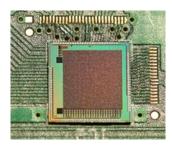
- ASIC design
- system level.

Front-end systems with

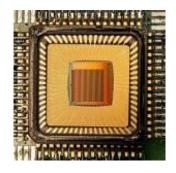
- very large bandwidth
- very low noise
- very low-power

Various architecture options are being investigated:

- low level discrimination and fast TDCs
- high frequency ADC sampling
- no solution will fit it all



Creating the FAST electronics community

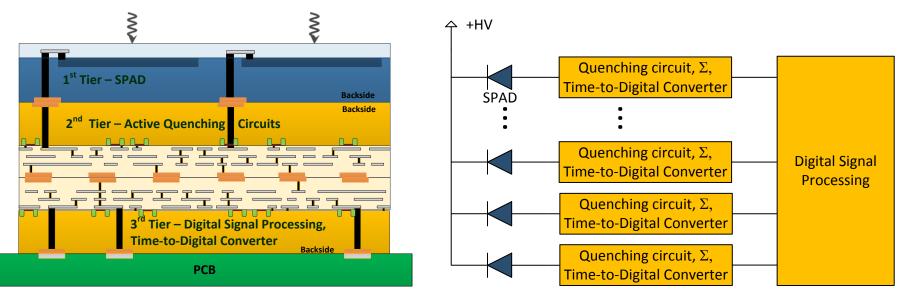

Marchan and		
Wednesday	, 15 April 2015	
09:00 - 09:10	Introduction 10' Speaker: Joao Varela (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part)	Q-
09:10 - 09:35	Developments at PSI 25' Developments at PSI	<i>Q</i> -
	Speaker: Dr. Stefan Ritt (Paul Scherrer Institute)	
09:35 - 10:00	3D Single Photon Modules for Fast Timing Detectors 25' Developments at University of Sherbrooke	<i>Q</i> -
	Speaker: Jean-Francois Pratte (Universite de Sherbrooke)	
10:00 - 10:25	Development at University of Barcelona 25' Speaker: David Gascon (University of Barcelona (ES))	Q-
10:25 - 10:45	Coffee break	
10:45 - 11:10	Developments at Omega and Weeroc 25' Developments at Omega and Weeroc Speaker: Julien Fleury (CNRS/IN2P3)	Q -
11:10 - 11:35	Developments at University of Heidelberg 25' Speaker: Wei Shen (Kirchhoff Institute for Physics)	Q-
11:35 - 12:00	Developments at LIP, Lisbon 25' Developments at LIP, Lisbon Speaker: Joao Varela (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part)	2-

PSI - Villigen

- DRS4 allows timing measurements < 1 ps
- New WaveDAQ systems with ~10'000 channels under construction at PSI

•

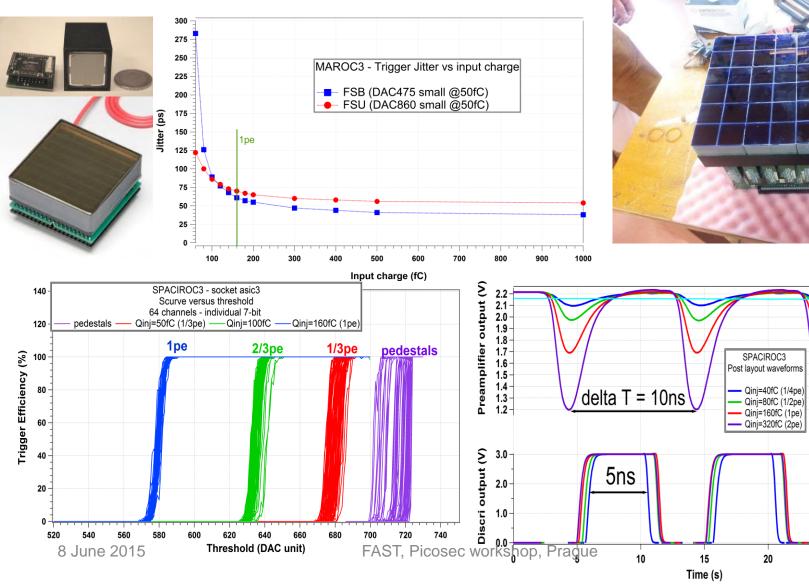
DRS5 (~2017) will allow dead time less readout up to few MHz



Sherbrooke Univ

3D Single Photon Counting Modules

- TSMC 65 nm CMOS process
- 2 tiers only: Tier 1 SPAD array, Tier 2 CMOS readout
- 50 x 50 µm² pixel
- Quenching circuit with adjustable threshold = optimal jitter
- 1 TDC per pixel = <u>No more signal propagation skew (SPTR)</u>
- 5 ps Vernier ring TDC with digital Phase Lock Loop feedback

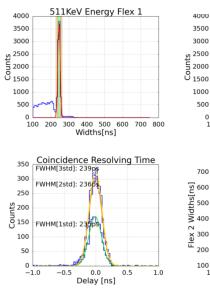


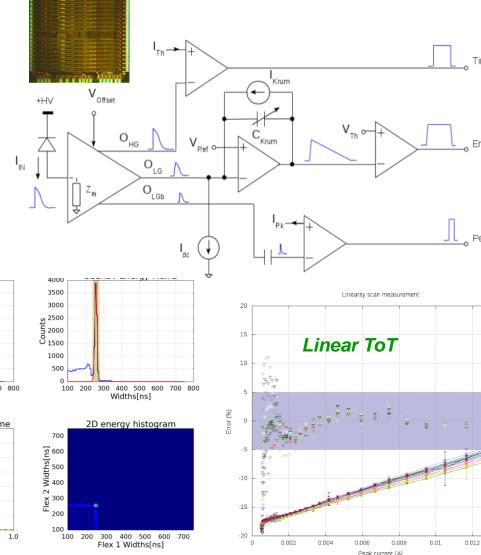
Omega and Weerock - Paris

25 30x10⁻⁹

25

MAROC - SPACIROC - PARISROC





Barcelona Univ

FlexToT ASIC

- A Flexible 16 Ch ASIC for SiPM RO • (PET, SPECT, Compton)
 - Novel current mode input stage
 - Time resolution for ToF
 - Time over Threshold RO: No ADC
 - SiGe BiCMOS 0.35um
 - 10 mm2, 3.3 V (10 mW/ch)
- Linear ToT
- **Energy resolution** - @ 511 KeV < 8 %
- **Time resolution:**
 - SPTR < 120 (sigma)</p>
 - 50 um SiPM
 - CTR < 250 ps FWHM
 - LYSO 3x3x20 mm³
 - Limited by set-up
 - Improvement **10-20 % expected** 8 June 2015

FAST, Picosec workshop, Prague

0.014

Time

Eneray

Peak

1e-06

9e-07

8e-07

76-07

6e-07

5e-07

4e-07

3e-07

2e-07

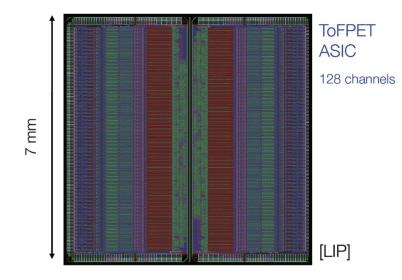
1e-07

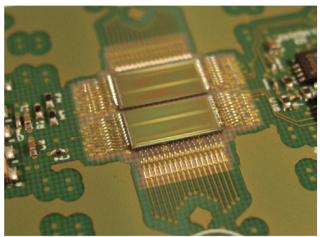
Heidelberg Univ

STIC ASIC

- 64 channel SiPM readout designed and tested Timing based energy readout Mixed mode chip, with TDC and serial link
- Coincidence timing resolution < 220ps
 Energy Resolution ≤10%

LSO 3.1 * 3.1 * 15 mm³ + MPPC s-10632


 Mass production steps established, CTR is good system commissioning in progress



LIP and PETsys - Lisbon

TOFPET ASIC

- Developed in collaboration with Torino
- 128 channels in 7 x 7 mm²
 - CMOS 130nm
- Frontend + TDC + Digital readout
- Optimum SNR performance for SiPM capacitance up to 350 pF
- Positive or negative signal polarity
- SNR (Qin = 200 fC): 25 dB
- Interpolation TDC
 - Time binning: 50 ps (option 25 ps)
- Optimized for low power
 - 8-11 mW channel
- Output data rate 640 Mb/s
- On-chip calibration circuitry

WG 5: applications

Possible applications of FAST detection chains:

- Medical Imaging
- Biological Imaging
- Security
- LiDAR applications
- Industrial non-destructive quality control
- High Energy Physics

- Medical Imaging/Diagnostics
 TOF PET
- Biological Imaging
 - 3D imaging/Live imaging
 - Multi-thread flow cytometry
 - Time-gated optical tomography
 - High troughput microscopy

First meeting of the FAST network was last April (here in Prague...)

The network is opened to the participation of new groups

http://www.cost.eu/COST_Actions/TDP/Actions/TD1401

Contact: Etiennette.Auffray@cern.ch