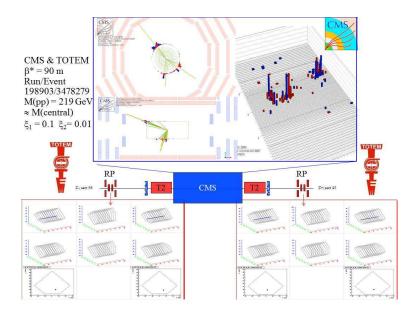
Timing detectors in particle physics and applications

Christophe Royon

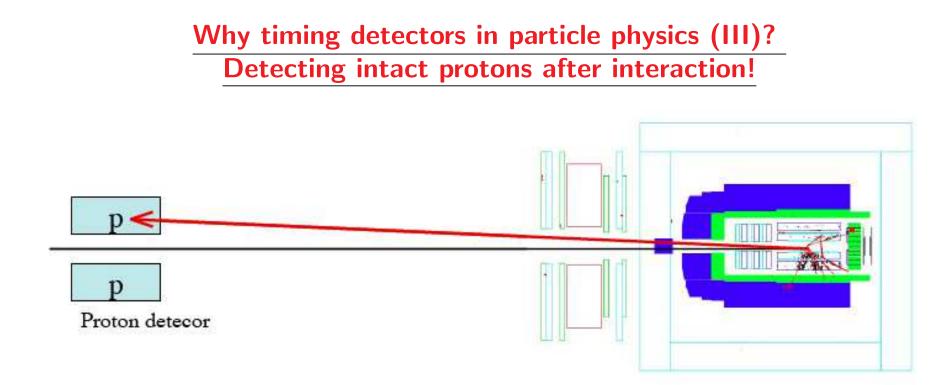

Institute of Physics, Academy of Science, Prague, Czech Republic Nuclear Physics Institute (PAN), Cracow, Poland

Timing detectors workshop, 8-10/06 2014, Prague, Czech Republic

Contents:

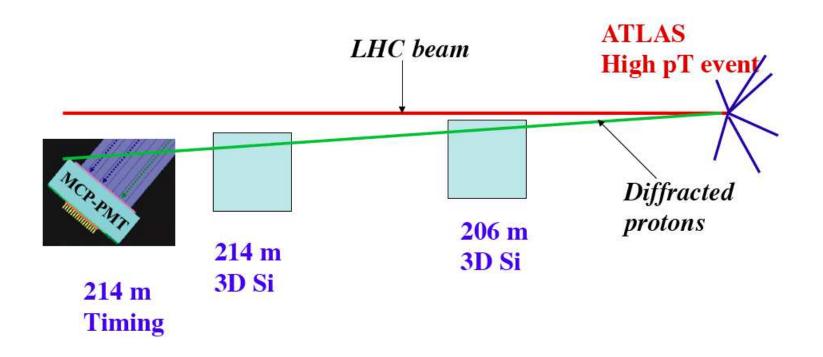
- Timing detectors in particle physics: pile up
- Physics motivation
- Applications (medicine...)

Work in collaboration with M. Saimpert, N. Minafra, V. de Cacqueray, N. Cartiglia, E. Delagnes, D. Breton, J. Maalmi



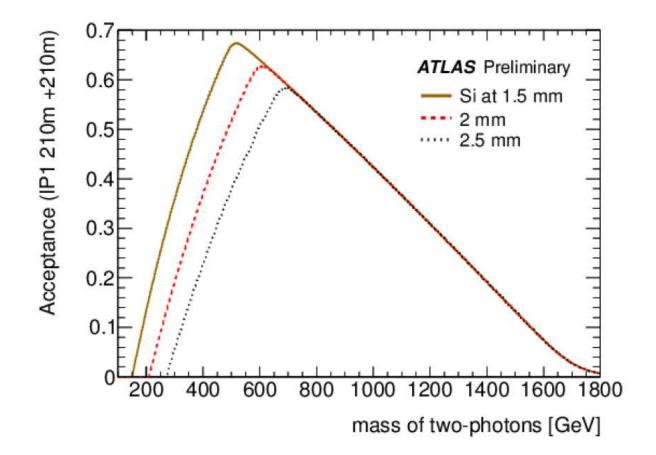
Why timing detectors in particle physics (I)? HERA: ep collider in DESY, Hamburg, Germany

Why timing detectors in particle physics (II)?


- Some strange events can be produced where the proton is not destroyed! The proton loses part of its energy
- These events are observed in electron-proton and proton-proton colliders
- Physics programme at the LHC including detection of intact protons: we will see why timing is important

LHC: Tagging intact protons in CMS-Totem/ATLAS

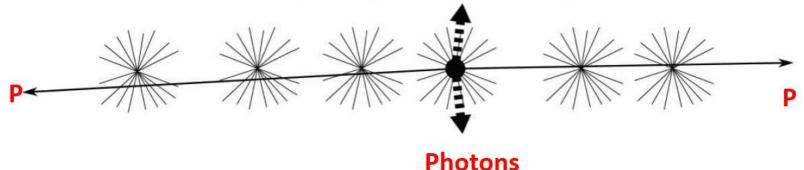
- Large Hadron Collider at CERN: proton proton collider with 13 TeV center-of-mass energy restarting in 2015
- Tagging intact protons at the LHC

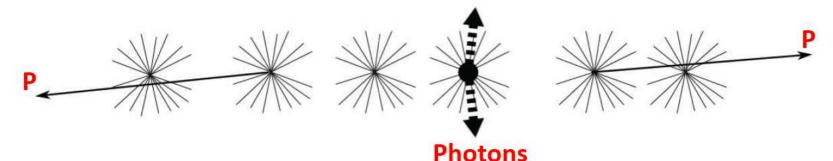

Proton detectors in CMS-TOTEM/ATLAS

- Tag and measure protons at ±210 m: AFP (ATLAS Forward Physics) in ATLAS, CT-PPS (CMS TOTEM - Precision Proton Spectrometer) in CMS/Totem
- AFP/CT-PPS detectors: measure proton position (Silicon detectors) and time-of-flight (timing detectors) (we will see later why this is important!)
- Many applications of timing detectors: medicine, drones....

The AFP/CT-PPS detector

- $\bullet\,$ Tag and measure intact protons at ± 210 m at the LHC
- Allows to access masses of produced object in ATLAS between 350 and 1.4 TeV: contrain the kinematics/mass of the produced object by measuring final state protons (system fully constrained)

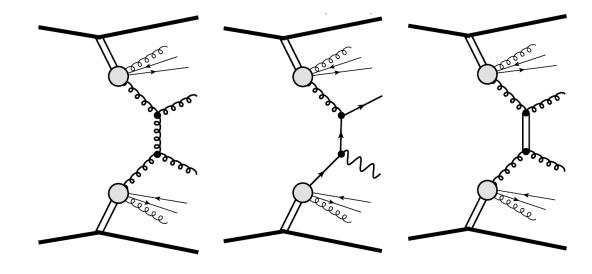

26 roman pots installed by TOTEM on both sides of CMS


- 26 roman pots installed on both sides of CMS by the TOTEM collaboration!
- Combination of vertical (CMS-TOTEM) and horizontal (CT-PPS) roman pots: see talk by Joao
- Different physics topics: low and high mass diffraction (QCD), sensitivity to new physics

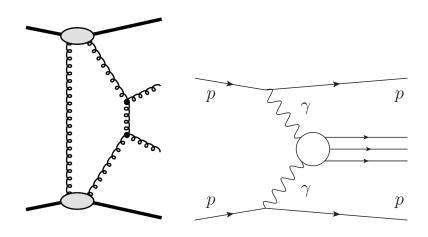
One aside: what is pile up at LHC?

A collision with 2 protons and 2 photons

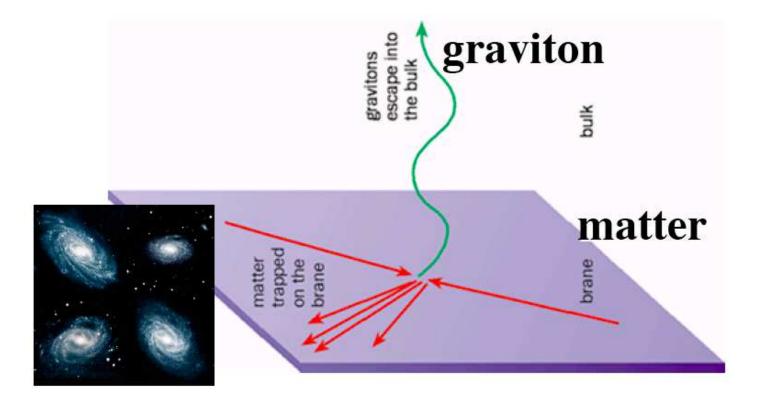
can be faked by one collision with 2 photons and protons from different collisions



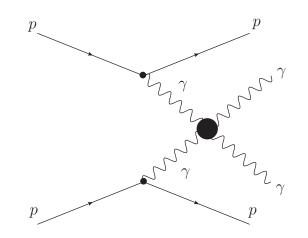
• The LHC machine collides packets of protons


- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events in Run II

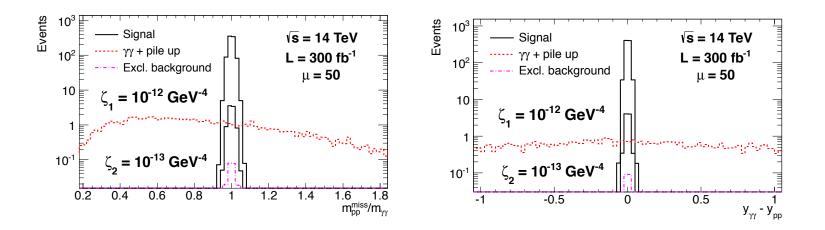
Physics motivation (I)


 "Inclusive" diffraction: Structure of the colorless object that is exchanged (gluon, quark) (C. Marquet, C. Royon, M. Saimpert, D. Werder, arXiv:1306.4901); C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys.Rev. D79 (2009) 094019; Phys.Rev. D83 (2011) 034036)

• "Exclusive" diffraction: Understand mechanism in QCD, possibility of new discoveries (global, SUSY, extra-dimensions, composite Higgs...)



Physics motivation (II): Looking for extra-dimensions in the universe



- We live in a 4 dimension space: time and space
- Gravity might live in extra-dimensions: exploration at the LHC for instance by looking for new couplings between particles and production of new particles
- If discovered at the LHC, this might lead to major changes in the way we see the world

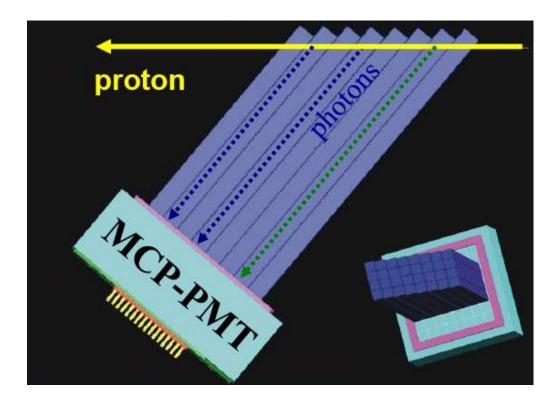
Physics motivation (III): Search for extra dimensions in the universe using $\gamma\gamma$ and two intact protons

- Search for production of two photons and two intact protons in the final state: $pp \rightarrow p\gamma\gamma p$ (also WW, ZZ productions)
- Number of events predicted to be increased by extra-dimensions, composite Higgs models
- Discovering those extra-dimensions would be a very fundamental discovery in physics E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010) 074003; S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon. M. Saimpert, HEP 1502 (2015) 165, Phys. Rev. D 89 (2014) 114004

Removing pile up: measuring proton time-of-flight

- Measure the proton time-of-flight in order to determine if they originate from the same interaction as our photon
- Typical precision: 10 ps means 2.1 mm

Pile up treatment and Proton distribution in AFP


- Generation of 7 TeV protons (Single diffractive and Double Pomeron Exchange events) with PYTHIA 8
- Transport at AFP/CT-PPS position from the Interaction Point (IP) with FPTRACKER/MADX (program from the LHC beam division allowing transport through the magnets)

- Proton distribution (X distance from the horizontal axis on one side for SD, and correlations between both x on each side of ATLAS for DPE events)
- Probability for a proton to be tagged (taking into account SD/DPE cross sections) for one bunch crossing: 0.01% (double tag on each side), 1.6% (single tag on one side), 97% (no tag)

Timing detectors: from quartz bars to Si/diamonds

- Measure the vertex position using proton time-of-flight: Requirements for timing detectors
 - 10 ps final precision (factor 40 rejection on pile up)
 - Efficiency close to 100% over the full detector coverage
 - High rate capability (bunch crossing every 25 ns)
 - Segmentation for multi-proton timing
 - level 1 trigger capability
- Utilisation of quartz bars or more pixelised detectors: diamond or Silicon

Detector I: Different scenarii for a quartz bar detector

• 3 different kinds of pile up conditions to be considered: 50, 100 and 300

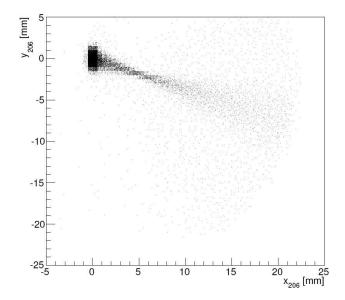
μ	P_N	$P_{S,left}$	P _{S,right}	P_D
0	0.97	0.016	0.016	9.9e-05
50	0.189	_	0.248	0.316
100	0.036	_	0.155	0.655
300	0.	_	0.007	0.986

- 3 different scenarii of QUARTIC considered (bar 1 is the closest to the beam):
 - Scn1: 7 bar detector: 2 mm width for bar 1, 3.25 for the others
 - Scn2: 10 bar detector, 2 mm width for all bars
 - Scn3: 20 bar detector, 1 mm width for all bars
- Inefficiency calculation: Probability to get a proton from pile up and a proton from signal in the same bunch crossing

Detector I: Bar inefficiencies

Inefficiencies - Scenario 1										
Bar	1 2 3 4 5 6 7									
$\mu = 50$	0.129	0.130	0.095	0.078	0.070	0.057	0.005			
$\mu = 100$	0.185	0.187	0.136	0.111	0.101	0.082	0.007			
$\mu = 300$	0.226	0.229	0.166	0.137	0.125	0.102	0.008			

Inefficiencies - Scenario 2										
Bar										
$\mu = 50$	0.129	0.085	0.067	0.057	0.049	0.046	0.043	0.040	0.036	0.011
$\mu = 100$	0.185	0.122	0.097	0.082	0.071	0.066	0.062	0.057	0.051	0.016
$\mu = 300$	0.226	0.149	0.118	0.100	0.087	0.081	0.077	0.071	0.063	0.020

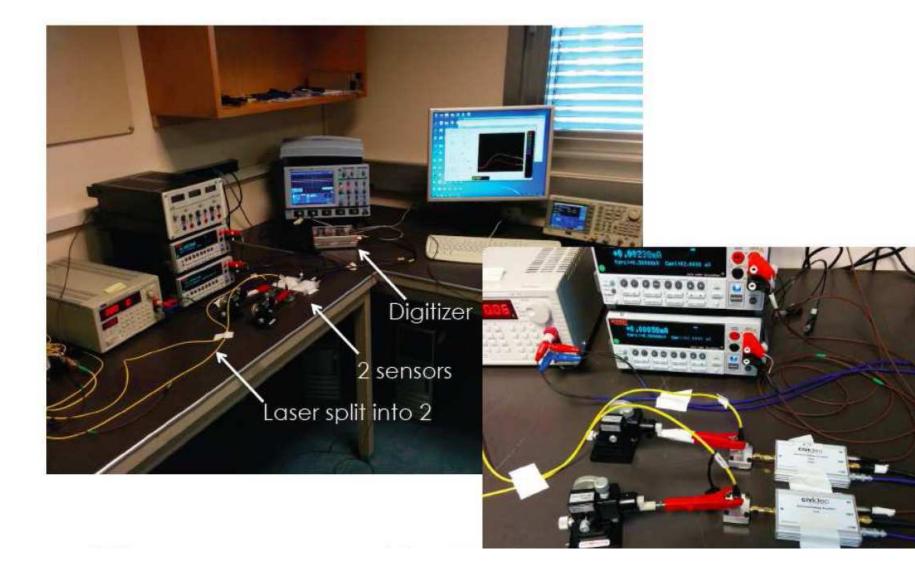

Inefficiencies - Scenario 3											
Bar	1	2	3	4	5	6	7	8	9	10	
$\mu = 50$	0.074	0.056	0.046	0.039	0.035	0.032	0.030	0.027	0.026	0.024	
$\mu = 100$	0.101	0.080	0.066	0.056	0.051	0.046	0.043	0.040	0.037	0.034	
$\mu = 300$	0.129	0.097	0.081	0.068	0.062	0.056	0.052	0.048	0.045	0.042	
Bar	11	12	13	14	15	16	17	18	19	20	
$\mu = 50$	0.023	0.022	0.022	0.021	0.020	0.020	0.019	0.017	0.010	0.001	
$\mu = 100$	0.034	0.032	0.032	0.030	0.029	0.028	0.027	0.024	0.015	0.001	
$\mu = 300$	0.041	0.040	0.039	0.037	0.036	0.035	0.033	0.030	0.018	0.001	

- Inefficiencies below typically 12% for bars closest to the beam
- Additional issue: Potential background created to the beam and in other detectors since in many cases, protons are destroyed in quartz bars (lots of material)
- Explore other solutions for upgrade: Si, diamonds pixels and may be nanotechnology materials (see talk by Nicolo)

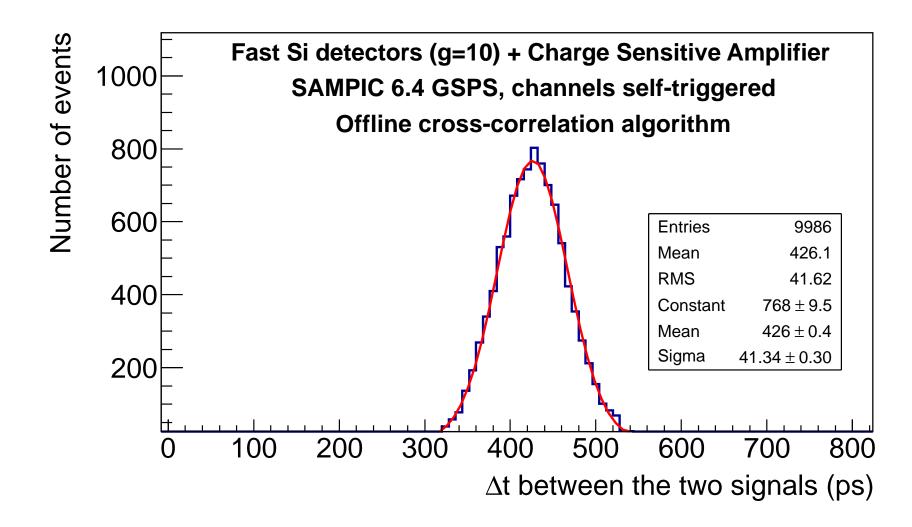
Detector II: Inefficiencies for pixel solution

Inefficiencies - 20x8 pixel design - $\mu=$ 50 - Scenario 3										
Row/Column]	2	3	4	5	6	7	8	9	10
8	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
7	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
6	0.026	0.002	0.	0.	0.	0.	0.	0.	0.	0.
5	0.047	0.054	0.036	0.004	0.001	0.	0.	0.	0.	0.
4	0.	0.001	0.010	0.034	0.030	0.017	0.008	0.004	0.002	0.002
3	0.	0.	0.	0.001	0.005	0.013	0.016	0.013	0.009	0.006
2	0.	0.	0.	0.	0.	0.001	0.004	0.007	0.009	0.008
1	0.	0.	0.	0.	0.	0.	0.001	0.002	0.004	0.005
	•									
Row/Column	11	12	13	14	15	16	17	18	19	20
8	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
7	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
5	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.	0.
3	0.004	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.
2	0.007	0.005	0.004	0.003	0.003	0.002	0.002	0.002	0.001	0.
1	0.005	0.005	0.005	0.004	0.004	0.003	0.003	0.002	0.002	0.

Leads to slightly smaller inefficiencies


Measuring the proton time-of-flight: the SAMPIC concept

- The general idea is to measure the signal created by the protons inside a quartz, diamond or Silicon detector
- New electronics developed in Saclay/Orsay called SAMPIC that acquires the full waveform shape of the detector signal: about 3 ps precision!
- SAMPIC is cheap (\sim 10 Euros per channel) (compared to a few 1000 Euros for previous technologies)
- See talk by Dominique, Victor


Time resolution using Si detectors

- Test setup using a laser signal split in 2 read out by fast Si detector
- Time difference and resolution measured by SAMPIC

Time resolution using Si detectors

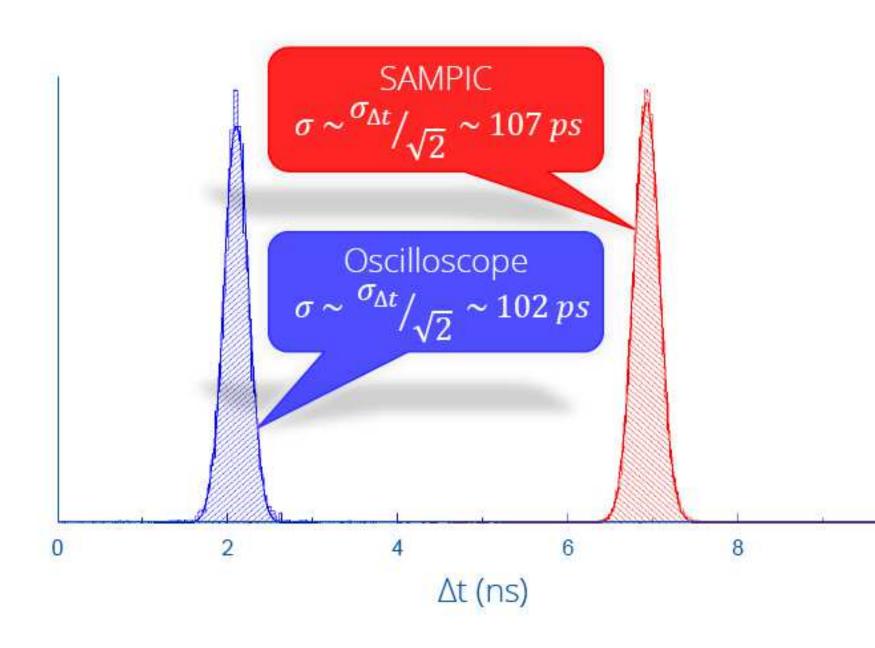
- Time resolution using sampic and fast Si detectors: measure the time difference between two channels
- Time resolution: (dominated by detector): \sim 30 ps (SAMPIC gives \sim 3 ps, better than 1mm), very promising for the LHC!

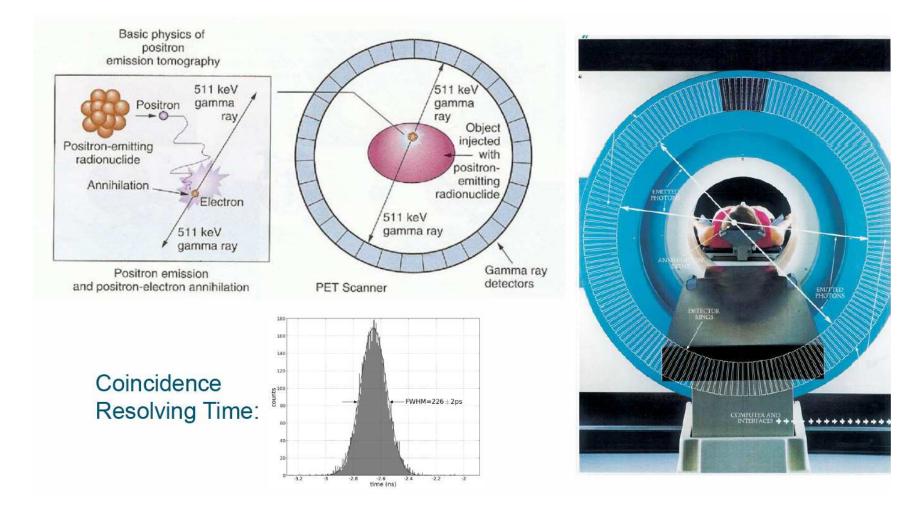
Beam tests in TOTEM using diamond detectors (I)

• Beam tests performed at DESY and CERN by TOTEM using diamonds detectors and SAMPIC

Beam tests in TOTEM using diamond detectors (II)

• Beam tests performed at DESY and CERN by TOTEM using diamonds detectors and SAMPIC


Agilent DSO 9254A 2.5 GHz bandwidth 10 Gs/s 8 bit > 1000 samples 4 channels Maximum rate ~100 Hz


SAMPIC 2.5 GHz bandwidth 10 Gs/s (used at 6.4 Gs/s) 11 bit 64 samples 16 channels Maximum rate ~500 kHz

Beam tests in TOTEM using diamond detectors (III)

• Measure the resolution on the time difference between two channels

The future: Application: Timing measurements in Positron Emission Tomography

- The Holy grail: 10 picosecond PET (3 mm resolution)
- What seemed to be a dream a few years ago seems now to be closer to reality
- Other possible application in drone technology: fast decision taking and distance measurement using laser

Conclusion

- AFP/CT-PPS and CMS-TOTEM aim at detecting intact protons: QCD (structure of Pomeron...), search for extra-dimensions in the universe via anomalous couplings between γ , W, Z...)
- Timing detectors: needed to reject pile up background
- Bar solution (quartic) leads to small inefficiencies if enough number of bars
- Pixelised solution leads to better efficiencies, also less material inducing background: diamonds, Si
- Many applications especially in PET imaging, drones...