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The Future is … 

J-F Genat, G. Varner, F. Tang, H. Frisch 
NIM A607 (2009) 387-393.  

G. Varner and L. Ruckman 
NIM A602 (2009) 438-445.  

1GHz analog bandwidth, 5GSa/s Simulation includes detector response 



Now: high space-time Resolution 
In a number of communities (future particle/astroparticle detectors, PET medical imaging, etc.)   
a growing interest in detectors capable of operating at the pico-second resolution and µm spatial 
resolution limit (for light 1 ps = 300 µm) 

Extending to 1ps and lower, with 
advanced calibration techniques 

Signal-to-Noise Ratio 

Prediction:       
circa 2009 

Measurement: 
circa 2014 

Front-End Electronics Fast signal collection x-ray detectors 

beam in 

200 – 300 
µm 

active 
edges 

signal electrodes 
with contact pads to 

readout 
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ASIC 
 

# chan 
 

Depth/chan 
 

Time Resolution [ps] 
 

Vendor 
 

Size [nm] 
 

Year 

LABRADOR 3 
 

8 
 

260 16 TSMC 250 2005 

BLAB 
 

1 
 

65536 1-4 TSMC 250 2009 

STURM2 
 

8 
 

4x8 <10 (3GHz ABW) TSMC 250 2010 

DRS4 
 

8 
 

1024 
 

~1 (short baseline) 
 

IBM 250 
 

2014 
 

PSEC4 
 

6 
 

256 
 

~1 (short baseline) 
 

IBM 130 2014 

RITC3 
 

3 
 

Continuous 
 

TBD  
 

IBM 
 

130 
 

--- 
 

PSEC5 
 

4 
 

32768 
 

TBD  
 

TSMC 
 

130 
 

--- 
 

DRS5 
 

8/16? 
 

128x32 
 

TBD 
 

UMC 110 --- 

SamPic 16 64 ~3 [pic 0] AMS 180 [2014] 

RFpix 128? TBD <= 100fs (target) TSMC 
 

45 ? 
 

--- 

Toward increased timing precision 
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Waveform sampling ASICs (not just good looking) 

WFS ASIC Commercial 

Sampling 
speed 0.1-15 GSa/s 3 GSa/s 

Bits/ENOBs 16/9-13+ 8/7.4 

Power/Chan. <= 0.05W Few W 

Cost/Ch. < $10 (vol) > 100$ 



Another gaze into the Crystal Ball 
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Exploration of the space-time limit 

             Pixel detector (PDX) at SuperKEKB 

-Sampling at high sampling rate and high bandwidth 
-Resolve small distances 
Current Goals:  Spatial resolution of 10μm in z and 20μm in rφ 
In Silicon 10μm in z corresponds to timing resolution of about 100fs 
   20μm in rφ will depend on the SNR 
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Visualizing parameters for time resolution in z 

 

∆t =
∆U
U

1
0.34 ∗ BW ∗ f s

^ Need to hold sampling frequency 
to least at 20 GHz to  
have timing resolution in 
100fs range  

< For the above sampling freq and 
BW integrated noise amplitude  
has to be in the range or less than 
0.5mV to 0.6mV corresponding  
to SNR~58dB (Vpp=1volts) 
 
     SNR~58dB corresponds to 9.4 
             bits for 20μm resolution 
  in rφ  (Ideal ADC)   
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WFS ASIC: Basic Functional components 

Sample timing 
Control 

Single storage 
Channel 

Few mm x  
Few mm in 
size 

On or off-
chip ADC 

Readout Control 
9 
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Intrinsic Limitation 

We aren’t going to put Analog Devices 
out of business 

No power (performance savings) for 
continuous digitization 

“down conversion”  
 For most “triggered” ‘event’ applications, 
not a serious drawback 
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Constraint 1:  Analog Bandwidth 
Difficult to couple in Large BW (C is deadly) 

f3dB = 1/2πZC  
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Constraint 2:  kTC Noise 
Want small storage C, but… 

1mV on 16fF is only 
100e- ! 
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Constraint 3:  Leakage Current 
Increase C or reduce conversion time << 1mV  

Sample channel-channel variation         
~ fA  nA leakage (250nm  130nm) 



Target Specifications  
(design study goals) 

Parameter Minimum desired value 

Sampling frequency (ASIC)       20 GHz 

Bandwidth (Detector and ASIC) 3 GHz 

Signal to Noise Ratio (Detector and ASIC) 58dB (Vpp=1 volts) 

Velocity of Propagation (Transmission Line/ 
strip line) 

 0.35c 

Number of Bits of Resolution  9.4 bit 
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This is an ongoing study – will show where we are 
 

Take the PSEC4 design as a reference 
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~1.6 GHz 
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PSEC4 



PSEC4: Sampling Analysis 

x256 

Utilizing PSEC4’s SCA as starting place 
-Adjustable Sampling rate between 4-15 GSPS 
-1.6 GHz bandwidth 
 
 
 
 
 
 
 
 
 
 
 
 
 
also 
-0.13μm CMOS (IBM-8RF) 
-10.5 bit  DC dynamics  
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Equivalent Circuit 
Multichannel 
 sampling array  

17 
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Simulation Results: Bandwidth for 
worst case operating bias point 
Whether the 1st switch is on or the last, Gain is the 

same 

f3dB 
w/ Par w/ 50 Ω 1.0 GHz 

w/o Par w/ 50 Ω 1.4 GHz 

w/ Par w/o 50 Ω 1.9 GHz 

w/o Par w/o 50 Ω 2.2 GHz 
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Simulation Results: Group Delay 
  Group Delay does vary depending which switch is on by ~25ps 

which puts a constraint on sampling time window 
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Simulation Results: Phase 
• At higher frequencies Phase vs freq behavior is also different 

and depends on which switch is on 

20 
Frequency (Hz) 



Simulation Results: Capacitance 

Capacitance is 2.2 pF and does not dependent on 
which switch is on  
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PSEC4 Analysis: Single Sampling Cell 
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PSEC4 Analysis: Single Sampling Cell 
Structure & Layout 

Top view Side view 
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Simplified Schematic • Driver circuit 
• Switch with n-p FET pair 
• Sampling capacitor 
• Comparator as load 

Switch & Sampling Capacitor 
Equivalent Circuit 

• Check Csampling 
capacitance 

• Identify Ron and Roff 

24 

Single Sampling Cell Coupling 



Sampling Capacitor Spread 

Capacitance [fF]
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N
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m
 o

f 
S

a
m

p
le

s

0

50

100

150

200

250

Monte Carlo with process variation 
and mismatches shows a 
discrepancy between Csampling 
Schematic (13.5 fF) and Measured 
mean (20.27 fF).  
 
The Spread is about 1.9fF which 
makes the Capacitor tolerance at 
about 9.3%  

Num. of 
Samp. 

MEAN STD MIN MAX 

1000 20.27 fF 1.89 fF 14.86 fF 26.24 fF 

25 



Pass Transistor (Switch) Resistance 

Voltage [V]
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• Ron=2.4k @665mVdc 

Voltage [V]
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• Roff is in GΩ 

• The PFET and NFET are not matched and 
Ron varies considerably 

TRACK state HOLD state 

NFE
T 

PFE
T 
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Frequency Analysis 
Performance: S(Z)-parameter 

0.
2

0.
5

1.
0

2.
0

5.
0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0

Z11 TRACK 200mVdc

Z11 TRACK 600mVdc

Z11 TRACK 900mVdc

Z11 HOLD 200mVdc

Z11 HOLD 600mVdc

Z11 HOLD 900mVdc

The input impedance 
is high and it is 
capacitive. 
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Input coupling analysis 

𝒁𝒁𝟏𝟏𝟏𝟏 =
𝟏𝟏 + 𝒔𝒔𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶𝑹𝑹

𝒔𝒔𝟐𝟐𝑪𝑪𝑰𝑰𝑰𝑰𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶𝑹𝑹+ 𝒔𝒔 𝑪𝑪𝑰𝑰𝑰𝑰 + 𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶
 

The transfer function parts: 
• input parasitic capacitance of the transistor 

plus capacitance of the transmission line 
section. 

• Series resistance of the transistor channel 
(Rds) 

• Output capacitance which is formed of the 
parasitic capacitance of the transistor, 
sampling capacitor and load capacitance  

 

Frequency [Hz]
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Con-nopar

Con-par

Con-par&load

Coff

Capacitance Value [fF] 

Cin_open 8fF 

Csw_out 10fF 

Csamp 20.3fF 

Cload 13fF 

Capacitance values 

Cin + 
Cout 

Cin 
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Small signal frequency response 

Vdc [V]

0 0.2 0.4 0.6 0.8 1 1.2

B
a

n
d

w
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th
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0

2

4

6

8

10

12

14

16

18

20

LowZ ideal

LowZ par

LowZ load&par
50Z ideal

50Z par

50Z load&par

X: 0.65

Y: 1.688

Bandwidth 

• Isolation is over 60dB over 
all parameter space 
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Isolation 

• BWworst≈1.7GHz @665mVdc 
@50Ω drive 

• BWworst≈2.3GHz @665mVdc 
@LowZ drive 
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Small signal phase analysis 

Frequency [Hz]
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Group Delay without the load 
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Group Delay with the load 

 Large group delay variation points to large distortion 
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Large signal response (I) 

Vp [V]
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Low frequency gain compression 

Vp [V]
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High frequency gain compression 

• Full dynamic range at low 
frequency, compression 
appears when reaching the 
voltage threshold of the PN 
junctions at the 
drain/substrate barrier.  

• Gain compression at lower 
and higher amplitudes 
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Large signal analysis (II) 
High frequency gain compression & 
distortion 

Three region of operation: 
• Low distortion & High 

compression 
• Moderate distortion & Moderate 

compression 
• High distortion & High 

compression 
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Understanding signal response 

Low distortion & High compression 

Time [ns]
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• Resistance of the channel does 
not vary much   -> Low distortion 

• At high resistance the bandwidth 
is limited          -> lowering of the 
gain (compression) 
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Understanding signal response 

Moderate distortion & Moderate 
compression 

• Resistance of the channel is varying                                       
-> The bandwidth at instantaneous values 
of the incident voltage waveform is 
different                                          

   -> In frequency domain this gives rise to 
higher harmonics, which interfere 
constructively hence  increasing the overall 
signal amplitude but also increases distortion 
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Harmonic decomposition 
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Time domain decomposition Frequency domain decomposition 

• Constructive interference of odd 
harmonics and destructive 
interference of even harmonics at 
the peaks 

• Constructive interference of second 
and third harmonics at zero crossing  
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Noise and Distortion 

Vdc [V]
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Input referred noise 

• Noise dominated by the ON 
resistance of the channel 

Integrated referred noise 
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• Total noise is around 0.29mV ± 0.01 
mV 
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Noise, distortion and dynamic range 
Signal to Noise Ratio at full scale input (1Vpp) 

Vdc [V]
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• SNR is around 61.7dB ± 0.3 dB 
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Distortion analysis 

Vp [V]
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Distortion at fixed Vdc Distortion at fixed Frequency 

• Most of the distortion comes from the Ron variation over 
the input voltage range 
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SINAD & ENOB assessment 

ENOB at low frequency 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = −𝟏𝟏𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏
−𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏−

𝑻𝑻𝑻𝑻𝑻𝑻
𝟏𝟏𝟏𝟏  

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝟏𝟏.𝟕𝟕𝟕𝟕 + 𝟐𝟐𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

𝟔𝟔.𝟎𝟎𝟎𝟎  

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
d
c 

[V
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 
 

 

 

 

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
re

q
u
e
n
c
y
 [
M

H
z
]

10 0

10 1

10 2

10 3

 
 

ENOB versus frequency 

• ENOB DOMINATED BY 
DISTORTION 
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Transient Response 
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HOLD 

HOLD 
TRACK 

Backlash 

Forward 
Transient 

Pedestal Error 

Acquisition time 
Settling time 

Input Vdc voltage Acquisition time Settling time 

300mV 0.14ns 0.11ns 
600mV 0.68ns 0.11ns 
900mV 0.52ns 0.11ns 

• 15% backlash at 30mV forward 
transient 

• Pedestal error due to charge 
injection and transistor 
mismatch dominate • Worst case window time is 0.8ns or 

1.25GHz -> due to low bandwidth 
• Best case is 0.25ns or 4GHz 
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Summary – Requirements comparison 
Parameter Measured (worst cases) Requirement 

Bandwidth (Single cell) 1.7GHz @665Vdc @50Ω 3GHz 

Bandwidth (Multi cell) 1.0GHz @665Vdc @50Ω 3GHz 

SNR 61.7 dB 58dB 

ENOB 9.8 bits (small region) 9.4 bits 

Things to improve: 

• Reduce Ron variance over the dynamic range to reduce distortion and increase 
the ENOB 

• Bandwidth dominated by Cin: 
• Reduce Cin or reshape the channel to increase the bandwidth (first pole) 
• Reduce Ron overall value to increase the bandwidth (second pole) 

• Speed dominated by bandwidth: 
• Increase bandwidth 
• Overlapping of sampling cell windows to increase the effective sampling 

frequency 
• Use differential configuration to reduce pedestal error and increase noise 

coupling and crosstalk immunity  
 41 



Future Plans 
• Now in detector, not readout limited timing regime 
• PSEC5 ASIC 

– 256  32k sample storage 
– Work to optimize bandwidth, ENOB 
– Persistence effects 

• RFpix ASIC 
– Push limits of ABW, timing 
– Below 100-200fs, direct spatial measurement becomes 

interesting 
– Many practical issues, but none fundamental (CF 1ps) 

• DRS5, SAMPIC ASICs 
– Will be interesting to see how well can perform 
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Back-up slides 
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BLAB1 High speed Waveform sampling 

• Comparable 
performance to best 
CFD + HPTDC 

• MUCH lower power, no 
need for huge cable 
plant! 

• Using full samples  
reduces the impact of 
noise 

• Photodetector limited 6.4 psRMS 

CH1 

CH2 

NIM A602 (2009) 438 
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SL-10 Timing Performance 
Nagoya Hawai’i 

σ ~ 38.37 

• Nagoya = constant fraction discriminator + CAMAC 
ADC/TDC  

• Hawai’i = waveform sampling + feature extraction 



Design Choices 
• Input coupling 

– Differential versus single-ended input 

– Needed analog bandwidth 
– Gain needed? 

• Sampling Options 
– On-chip PLL/DLL 
– External DLL 
– Analog transfer vs. interrogate in situ 

• ADC and readout options 
– Sequential output select vs. random access 
– On-chip vs. off-chip ADC 
– Serial, parallel, massively parallel 

 
Many variants have been explored… 
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IRS/BLAB3 
 Single Channel 

• Storage:  64 x 512 (512 = 8 * 64) 
 

• Sampling:  128 (2x 64) 
separate transfer lanes 

 Recording in one set 64, transferring other 
(“ping-pong”) 

• Wilkinson (32x2):   
64 conv/channel 
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IRS Die photo 

8x RF inputs 
(die upside down) 

5.82mm 

7.62mm 

32k storage cells  
per channel 
(512 groups of 64) 
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Deeper storage: Buffered LABRADOR (BLAB1) ASIC 

• Single channel 
• 64k samples deep,           

same SCA technique as    
LAB, no ripple pointer 

• Multi-MSa/s to Multi-
GSa/s 

• 12-64us to form Global 
trigger 

3mm x 2.8mm, TSMC 0.25um 

Arranged as 128 x 512 samples 
Simultaneous Write/Read 



50 
delta(time) (ns) 

Comparison of readout with CFD + CAMAC 
readout and UH waveform sampling 

slot 7, pad 30 

slot 1, pad 28 

slot 6, pad 61 σ≈170ps 

σ≈240ps 

σ≈275ps 

(close neighbor in hit plane) 

(symmetry partner in hit plane) 

140MHz background 

New BLAB-based Readout 

Timing 
resolution 
photodetector 
limited 
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Time Difference Dependence on Signal-Noise Ratio 
(SNR)
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IRS Input Coupling 

• Input bandwidth depends on 2x terms 
– f3dB[input] = [2*π*Z*Ctot]-1 

 

– f3dB[storage] = [2*π*Ron*Cstore]-1 

 
 

Input Coupling versus total input Capacitance
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Founding WFS ASIC References 
• PSI activities (DRS) 

– IEEE/NSS 2008, TIPP09 

– http://midas.psi.ch/drs 

• DAPNIA activities 
– MATDAQ: IEEE TNS 52-6:2853-2860,2005 /  Patent WO022315  
– SAM; NIM A567 (2006) 21-26.  

• Hawaii activities 
– STRAW: Proc. SPIE 4858-31, 2003. 
– PRO: JINST, Vol. 3, P12003 (2008).  
– LABRADOR: NIM A583 (2007) 447-460. 
– BLAB: NIM A591 (2008) 534-545; NIM A602 (2009) 438-445. 
– STURM: EPAC08-TUOCM02, June, 2008.  
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SAMPIC0: a Waveform based TDC chip 
SAMPIC0 : a 16 channel WTDC 

 proof of concept chip already usable with detectors 
 Test of CMOS AMS0.18µm (low cost, low leakage, 1.8V technology) 
 Compatible with buffered architecture (deatime free) => future chips 

Each channel Self-Triggerable to catch parameters of fast pulses: 
 Timing : 

 Coarse = timestamp counter 
 Middle = DLL based TDC  also defining a Zone of Interest for sampling 

 Fine = few samples in the ZOI of the sampled waveform 
 Waveform Shape, Charge, Amplitude available through samples 
 No need for high-end discriminator => low power, versatility 
 Short SCA (to accommodate the delay of the discriminator) 

 
AMS CMOS 0.18µm  
10 mm2 

• H. Grabas1 

• E. Delagnes1 

• D. Breton2 

• J. Maalmi2 

1 CEA/IRFU/SEDI Saclay 
2 CNRS/IN2P3/LAL Orsay 



SAMPIC0 Architecture 
 Common “Slow” (160MHz) 12-bit Gray 

Counter =  Coarse Timestamping/ch 
 

 Common Timing generator: servo-
controlled DLL: (1-10 GHz) used for 
middle precision timing & analog 
sampling commands 
 

 16 (short) SCA self-triggerable channels: 
 No analog input buffer 
 64 cells, ~ 50fF capacitor 
 1.5 GHz Bandwidth 

 

 Several modes of triggering: discri on 
threshold (+/-), External, Or… 
 

 On-chip fast Wilkinson digitization : 
 1.3 GHz common gray counter. 
 tunable ramp slope=> trade-off 

conversion time/precision 1.6µs/11bit 
to 200ns/8bit 

 Simultaneous conversion of all the SCA 
cells of the triggered channels 

 

 
 
 

 

 

 Deadtime = only for triggered channels 
waiting or in conversion => independent 
DEADTIME (can be common if required) 
 

 Read-Out through a 12 bit/160 MHz (up to 
400) LVDS bus: negligible readout deadtime 

 

 SPI for configuration (Trigger modes, 
discriminator thresholds (1/ch),…) 
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Stefan Ritt 56/38 

Cascaded Switched Capacitor Arrays shift register input 

fast sampling stage secondary sampling stage 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• 32 fast sampling cells 
(10 GSPS)  

• 100 ps sample time, 
3.1 ns hold time 

• Hold time long enough 
to transfer voltage to 
secondary sampling 
stage with moderately 
fast buffer (300 MHz) 

• Shift register gets 
clocked by inverter 
chain from fast 
sampling stage 
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FIFO-type analog sampler 

di
gi

tiz
at

io
n 

• FIFO sampler becomes immediately 
active after hit 
 

• Samples are digitized asynchronously  
 

• “De-randomization” of data 
 

• Can work dead-time less up to 
average rate = 1/(window size * TSR) 
 

• Example: 2 GSPS, 10 ns window size, 
TSR = 60 → rate up to 1.6 MHz  



Stefan Ritt 58/38 

DRS5 Plans 

co
u n

t e
r
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l a
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h
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write

pointer

read
pointer

digital readout

analog readout

trigger

FPGA• Self-trigger writing of 128 short 32-bin 
segments (4096 bins total, 3 GHz analog 
bandwidth) 
 

• Storage of 128 events 
• Accommodate long trigger latencies 
• Quasi dead time-free up to a few MHz,  
• Possibility to skip segments 
→ second level trigger 
 

• Attractive replacement for CFG+TDC 
 

• First tests: > 10 GSPS @ 4 mA, first full 
version planned for 2014 

110 nm UMC 



Very first measurement results 

 

 
 

 Performed with a 16-channel mezzanine-board compatible 
with the system (USB/Eth/optical) previously developed for 
the SAMLONG chips 

 Already usable for small/experiments or detector tests  

1 GHz, 0.5pp sinewave   @ 10.2 GSPS 
(only pedestal corrections). All the 64 
samples are usable. 

 180mW power consumption 
 Sampling 3.2GSPS- 8.4 GSPS OK for the 

16 channels, and up to 10.2 GSPS for 
the 8 first channels 

 Discriminator able to trigger on pulses 
with FWHM < 800ps 

 Discriminator noise < 2mV RMS 
 SCA noise < 1.3mV RMS in 11-bit mode 

(1.6mV in 9-bit) 
 Range = 1V =>  9.6 bit RMS 
 Gain spread between cells = 0.7% RMS, 

INL = 3% pp.  
 1.6 GHZ SCA Bandwidth (uniform on all 

cells/all channels) 

800ps FWHM pulses, self 
triggered & sampled @ 6.4 GSPS 

Discriminator S-Curve , internal & 
external threshold, 3kHz rate 

Bode plot 0.5V pp sinewave 

Noise map: 1 ADC count ~ 0.5mV 



SAMPIC0: Summary 
Unit 

Technology AMS CMOS 0.18µm 

Number of channels 16 

Power consumption 180 (1.8V supply) mW 

Discriminator noise 2 mV RMS 

SCA depth 64 Cells 

Sampling Speed <3-8.4 (10.2 for 8 channels only) GSPS 

Bandwidth 1.6 GHz 

Range  (Unipolar) 1 V 

ADC resolution 8 to 11 (trade-off time/resolution) bit 

SCA noise <1.3 mV RMS 

Dynamic range 9.6 Bit RMS 

Conversion time 0.2-1.6 (8bit-11bit) µs 

Readout time (can be probably be doubled ) 25 + 6.2/sample ns 

Time precision before correction 15 pS RMS 

Time precision after timing INL correction < 5 pS RMS 
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