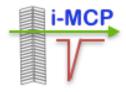


On behalf of the i-MCP collaboration

(*) from 511 keV to O(1) TeV [detection of optical photons well known]


- High energy photons:
 - Università di Milano Bicocca and INFN, Italy
 - L.Brianza, A. Ghezzi, C.Gotti, P.Govoni, A.Martelli,
 B.Marzocchi, S.Pigazzini, T.Tabarelli de Fatis, N.Trevisani
 - Università di Roma "Sapienza" and INFN, Itlay
 - F.Cavallari, D.Del Re, S.Gelli, C.Jorda Lopez, P.Meridiani, G.Organitini, R.Paramatti, L.Perinié, S.Rahatlou, C.Rovelli, F.Santanastasio
 - Buderk Institute of Nuclear Phyiscs (BINP) Novosibirsk, Russia
 - A.Barinyakov, M.Barniakov

PET photons:

- INFN, Sezione di Cagliari, Italy
 - D. Brundu, A.Cardini, V.Fanti
- INFN, Sezione di Ferrara, Italy
 - G. Zavattini

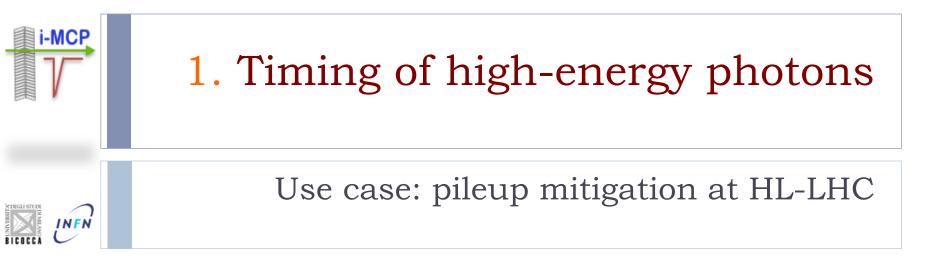
Università di Milano Bicocca and INFN, Italy

Research opportunity ...

- Micro Channel Plates known for superior time performance:
 - Compact devices with small transit time

Conventional usage:

- TOF systems with ions
- Amplification stage in photomultipliers (optical photon detection)

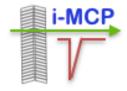

...quest for high-resolution timing of photons

1. $E_{\gamma} \sim 10 \text{ GeV} - 1 \text{ TeV}$

- Pileup mitigation with combined time and vertex reconstruction
 - Feasibility being considered for HL-LHC (ATLAS and CMS)

2.
$$E_{\gamma} \sim 0.5 \text{ MeV}$$

- Photon detection in positron-emission tomography
 - TOF-PET systems

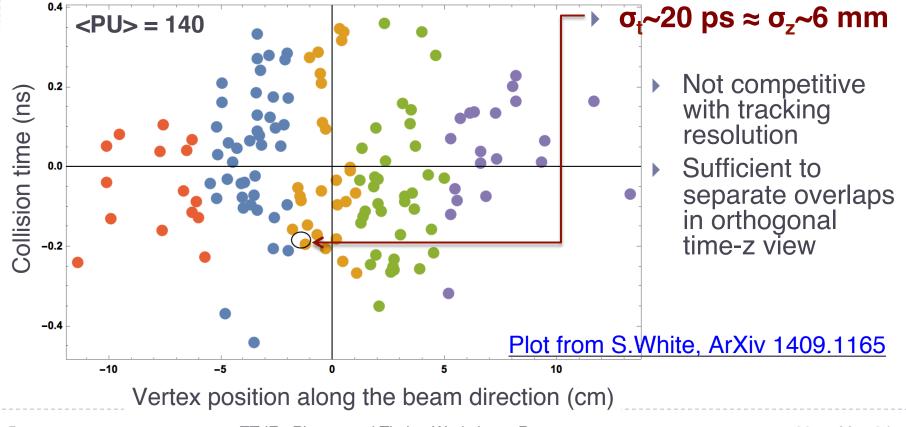


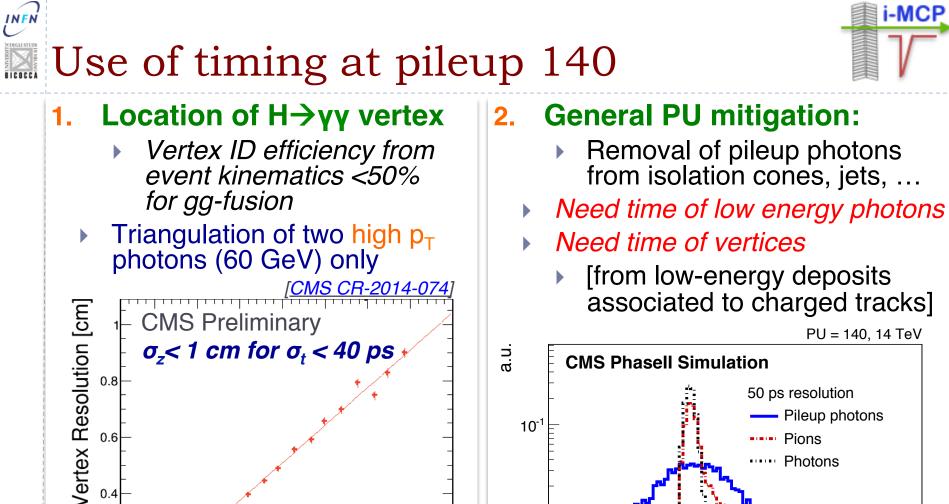
- High Luminosity (HL) requires higher rate of concurrent collisions per beam crossing (BX)
 - Due to the bunch structure of hadron colliders
- At HL-LHC ~ 140-200 pileup collisions per BX
 - Spread (rms) along the beam axis ~ 6 cm
 Spread (rms) in time (same BX) ~ 160 ps

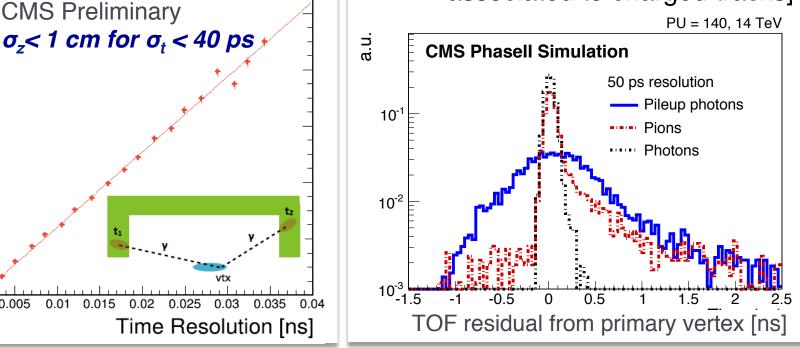
S.Fartoukh, Phys.Rev.STAB.17.111001

Bunch

length




Dissect collisions with time

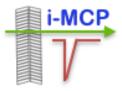

Individual (charged) particle association to an event vertex becomes strained

About **10%** of vertices merged at **140 pileup** (baseline optics)

- 'Effective *pileup*' similar to current LHC for ~20 ps resolution
 - [or can read this as 'with better timing could stand even higher pileup']

0.8

0.6


0.2

0.005

0.01

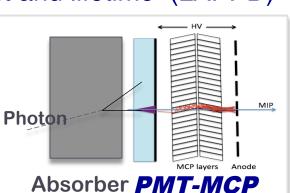
0.015

Requirements and concepts for HL-LHC / FPP-collider

- Timing of photons to ~20 ps
- Timing of vertices (< 20 ps) from charged particles
 - [Deposits in calorimeters associated to charged particles]
- ▶ Granularity of order 1 cm² (time-walk, occupancy, shower size)
- ▶ Active area of order 10 m² (endcap) for ~10⁵ channels
- ▶ Rate capability: 10⁶-10⁷ Hz
- Radiation hardness: 10 Mrad 10¹⁵/cm²
- Shower Max dedicated layer(s) embedded in the EM calorimeter or from the full longitudinal EM energy profile
 [and Timing Layer for tracks in front of a calorimeter system]
- **Pre-shower –** front compartment of an EM calorimeter
- Balance low occupancy MIP identification with EM showering
- Separate quest for precision timing from calorimeter technology

Ι.

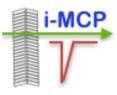
П.


i-MCP

MCP in shower detection and timing Attractive due to recent technological progress in MCP production (ALD) with impact in production cost and lifetime (LAPPD)

- **PMT-MCP**: 1.
 - High efficiency to MIPs through Cerenkov emission in the optical window
 - 20-30 ps in shower detection at beam tests
 - [A.Ronzhin et al, NIM A 759 (2014) 65]

2. Ionization-MCP:


- First proposal for calorimetry (no timing): [A. A. Derevshchikov et al. Preprint IFVE 90-99, Protvino, Russia, 1990.]
- Studied for muon detection (limited efficiency) [Bondila et al., NIM A 478 (2002) 220]
- Appealing with high MIP multiplicity (showers or jets)
- No photocathode \rightarrow robust design / assembly / potentially rad-hard
- Not studied in depth recently
 - [indirect study in A.Ronzhin et al., NIM A 759 (2014) 65]

MIP

Photon

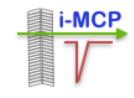
Absorber

i-MCP operation:

 Retarding bias to the photocathode to prevent photoelectron collection

Hodoscope [for beam centering]: норо

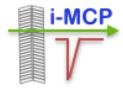
- x and y with 1 mm pitch
- DAQ based on CAEN V1742
 - DRS4 chip (PSI) set to 5GS/s

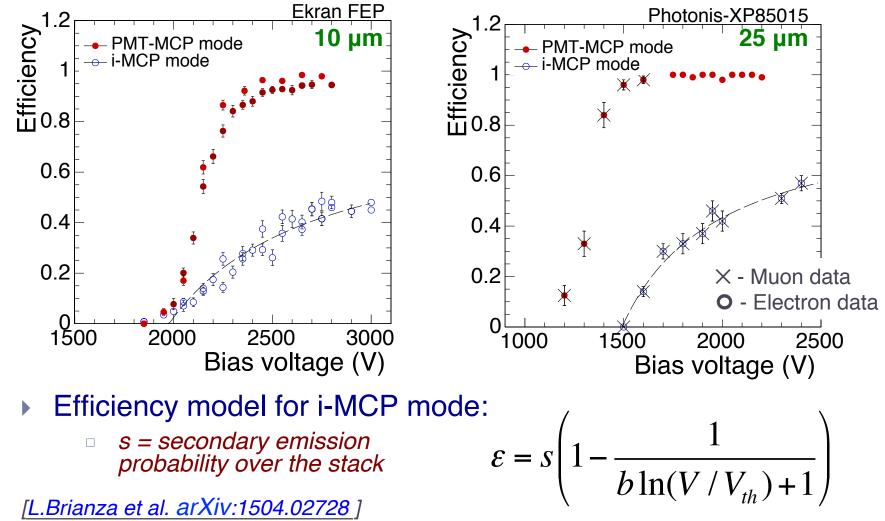

INFN

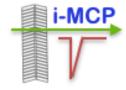
Test setup and MCP configurations

- Cosmic-ray muons test bench
 Election beam tests
 500 MoV electrops (BTE | NE, Italy)
 - 500 MeV electrons (BTF-LNF, Italy)
 - 20-50 GeV electrons (CERN SPS)

TF-LNF, Italy)

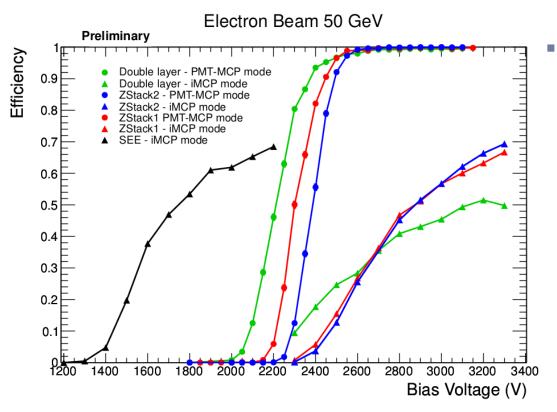

SUPPORT FOR ABSORBERS


RAIL


MCPs

Single particle efficiency

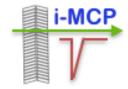
Double layer MCPs (aspect ratio 1:40)



Single particle efficiency (II)

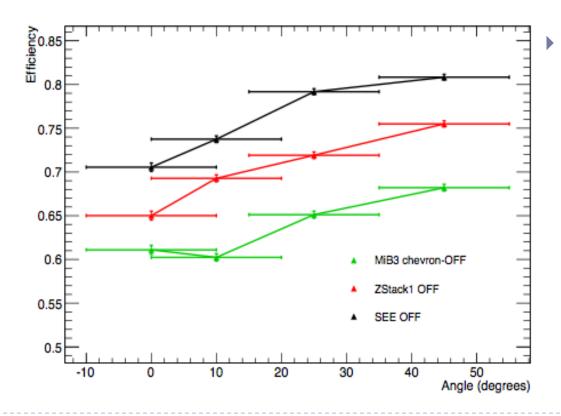
Ekran FEP (BINP) MCPs with 50 GeV electrons

- Same aspect ratio of wafers
- More pore-crossings in Z-stack



i-MCP mode:

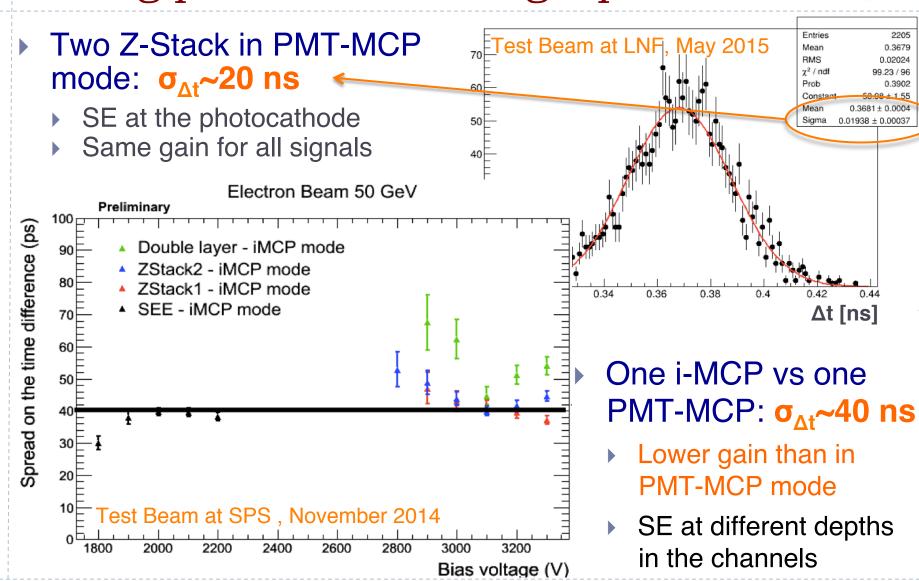
- Double layer (same MCP as in previous slide)
 - ► ≈ 50%
- Double layer with enhanced SE
- Z-Stack (triple layer)


ε~70%

• Next steps: thicker wafers, separate gain/conversion stages, ...

Efficiency vs angle (single track)

- Further gain in efficiency at large crossing angles
 - Bias angle of Ekran FEP MCPS ~ 10-12°
 - More channels crossed by single particle
 - Higher 'integral' SE emission probability

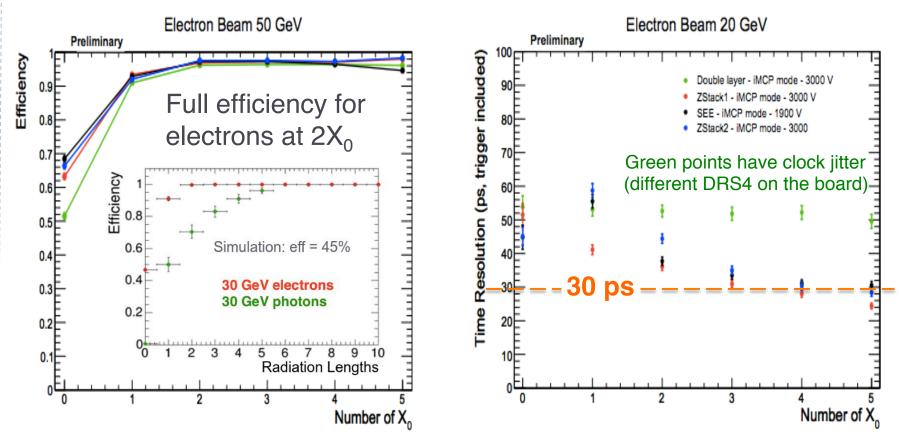


Efficiency up by 10%

- NOTE: All MCPs scanned together
- Red (Z-Stack) first on beamline
- Showering affects efficiency of downstream MCPs

HV = 2200 V (Enhanced SE) HV = 3200 V (other MCPs)

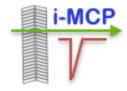
ĮNFŃ



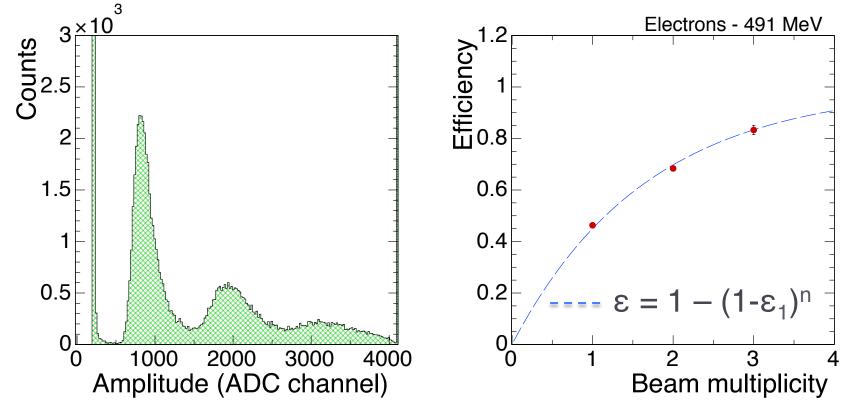
Timing performance: single particles

i-MCP

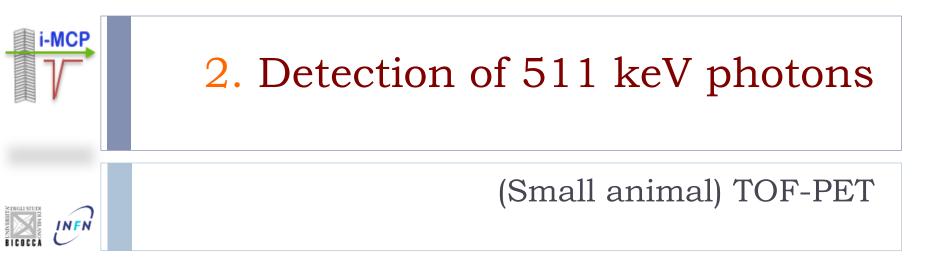
MCP in shower detection / timing


- Response vs the shower depth (i.e. multiplicity)
- Configurations: double/triple layers, enhanced secondary emission

Efficiency to photons requires conversion


i-MCP

Multiplicity dependence

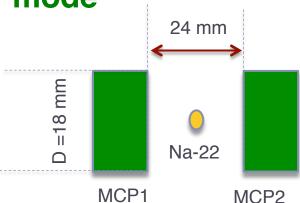


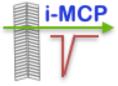
Vertex timing can exploit high track multiplicity in jets:

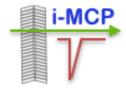
Full efficiency to MIPs desirable, but not mandatory

- Beam intensity at BTF-LNF tunable to few particles per spill
- Multiplicity from SCI counter / efficiency for at least one electron

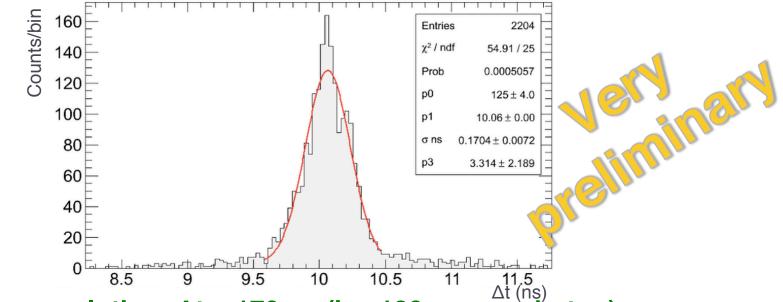
Test direct conversion of 511 keV in the MCP stack


- No information on the energy
- Potentially high time resolution
- 60% of "first" interaction due to Compton scattering (even in high-Z materials)

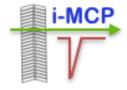

Test of PET configuration with two MCPs


Two PMT-MCPs operated in i-MCP mode

- Ekran FEP MCPs Z-stack
 - Three lead-glass wafers for ~0.6 mm total thickness
 - Pores ~ 8-12 μm Pitch ~ 10-12 μ m
 - Retarding bias to inhibit photocathode
- Waveforms digitized with Tektronix DPO7254
 - 8-bit digitization at 20 GSample/s, 2.5 GHz input bandwidth
- Trigger on delayed coincidence within ±10 ns
- Trigger threshold at **30 mV** $(50 \Omega \log \alpha)$



Time resolution and efficiency


- MCPs operated at HV = 2800 V, with trigger threshold at 30 mV
- Offline discrimination with CFD at 50%

Time resolution: $\Delta t \sim 170 \text{ ps}$ (i.e. 120 ps per photon)

- Source of additional time spread
- Per photon detection efficiency ~ 10⁻³
 - Measured from source activity and setup geometry
 - Photon conversion probability ~ 1.5%
 - Efficiency to MIPs ~ 5-10 % (TB data analysis with 30 mV threshold)

- **Discussed photon detection with MCPs**
 - Characterized MCP response to single particles and EM showers in PMT-MCPs
 - Retarding bias to photocathode to inhibit photoelectron collection
 - Dependence of efficiency on geometry and operation parameters drives next tests:
 - Stack geometry, aspect ratio
 - High emissivity (test with ALD wafers)
 - Has to study radiation hardness and magnetic field immunity

Pre-shower based on i-MCP viable for pileup mitigation
 Preliminary results in detection of 511 keV γ's interesting