

The CT-PPS project and timing detectors

Joao Varela, LIP

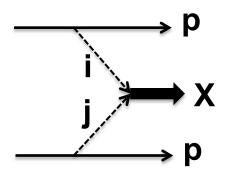
WORKSHOP ON PICOSECOND PHOTON SENSORS

Prague, 8-10 June 2015

CMS-TOTEM Precision Proton Spectrometer

CMS-TOTEM Memorandum of Understanding:

CMS and TOTEM jointly undertake the PPS project


CT-PPS project approval:

- CERN Research Board, December 2014

CEP: $pp \rightarrow p+X+p$

where X is a state measured in the central region

- **X** = μ + μ -, Z, H, WW, ZZ, and high E_T jets, ...
- + = rapidity gap

i, **j** = only photon and gluon exchanges are allowed

Four-momentum of X is fully constrained by the two protons kinematics:

- ξ proton fractional momentum loss
- t proton Mandelstam invariant

QCD physics

- Exclusive two and three jet events
- Test of pQCD mechanisms of exclusive production.
- Gluon jet samples with small component of quark jets

LHC as a photon-photon collider

- Measure $\gamma\gamma \rightarrow W^{\scriptscriptstyle +}W^{\scriptscriptstyle -}$, $e^+e^{\scriptscriptstyle -}$, $\mu^+\mu^{\scriptscriptstyle -}$, $\tau^+\tau^{\scriptscriptstyle -}$
- Search for AQGC with high sensitivity
- Search for SM forbidden ZZγγ, γγγγ couplings

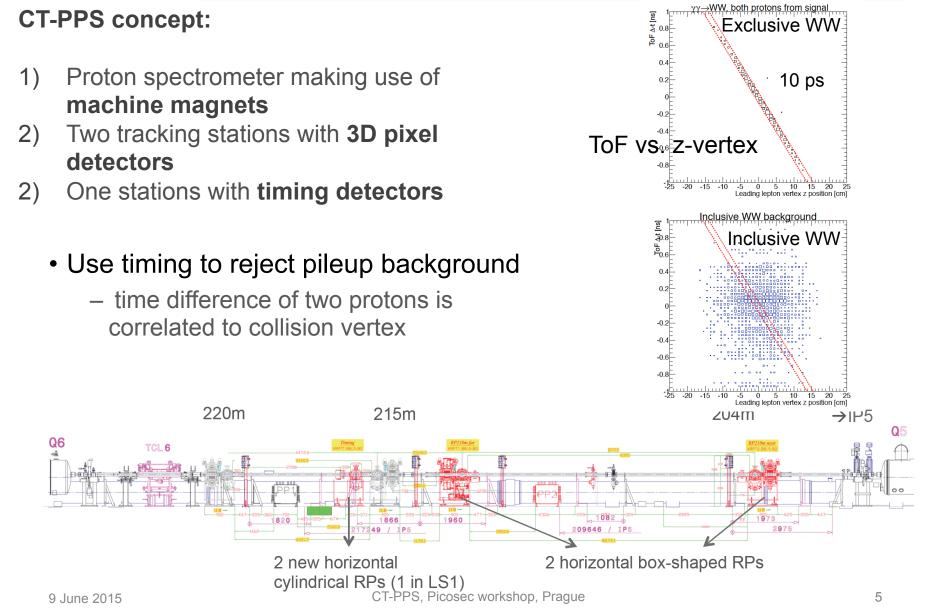
Search for new physics

- Clean events (no underlying pp event)
- Independent mass measurement by pp system
- J^PC quantum numbers 0++, 2++

High cross section

FOTEM

bridge


CMS

BSM

9 June 2015

Detector concept

- Physics performance at high luminosity (2.10³⁴ cm⁻² s⁻¹)
 - pileup background, beam background
- Detector operation close to the LHC beam
 - RF impedance, showers originated in the detectors
- Radiation levels
 - in detectors and front-end electronics
- Timing detectors
 - challenge is 10 ps resolution and high rates

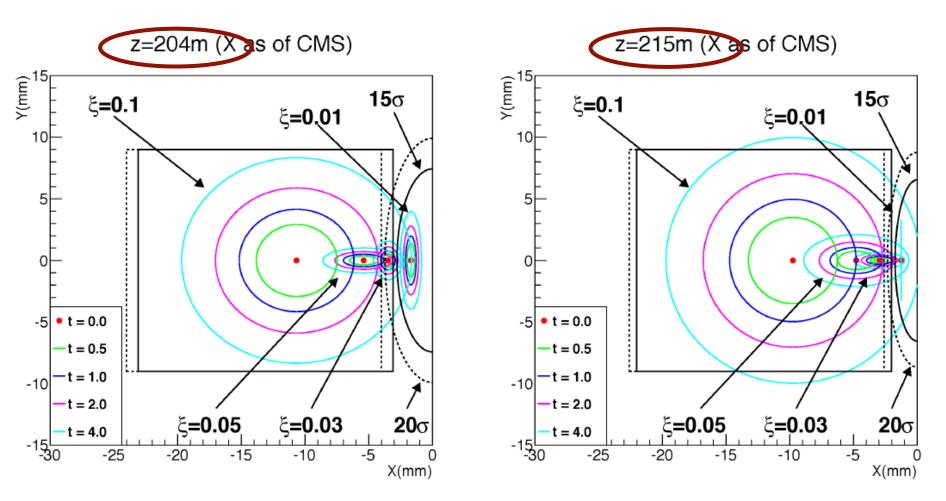
• Tracking detectors

- challenge is fluence 5.10¹⁵ protons.cm⁻² (100 fb⁻¹)

• The CT-PPS plan includes an **exploratory phase** in 2015-16 followed by a **production phase**.

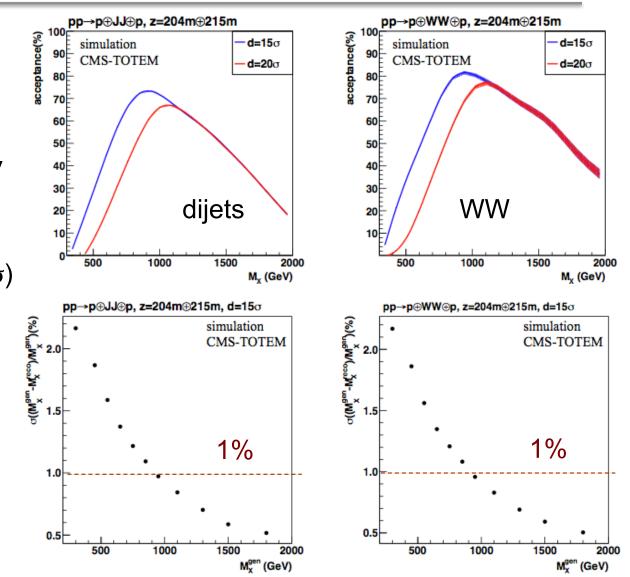
• Exploratory phase (2015-16):

Show that CT-PPS does not prevent the stable operation of the LHC beams and does not affect significantly the luminosity performance of the machine.

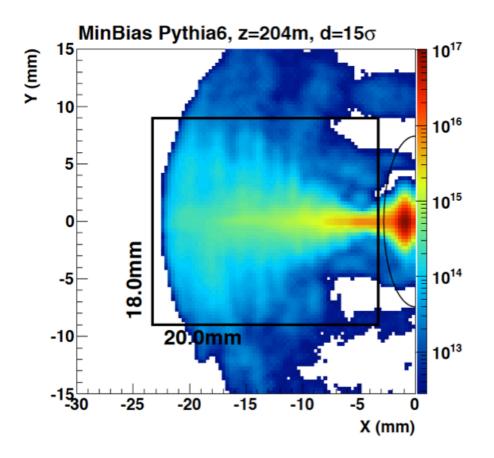

Detector and physics performance

Detector acceptance

Acceptance: X vs Y (includes ξ,t ellipses)

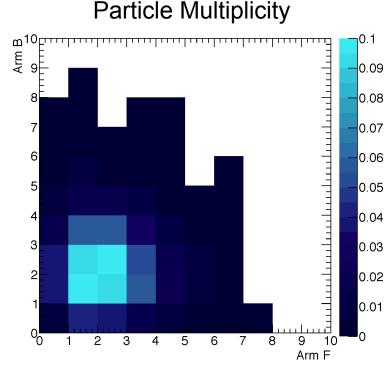

•Particle gun (t, ξ , ϕ) based on HECTOR at \sqrt{s} = 13 TeV

Mass acceptance and resolution


- Mass acceptance and resolution vs M_X
- PPS selects exclusive systems in 300-1700 GeV range (ε>5%)
- At 15σ acceptance larger by a factor of two (wrt 20σ) for lower masses
- Mass resolution ~1.5% at 500 GeV

Radiation levels

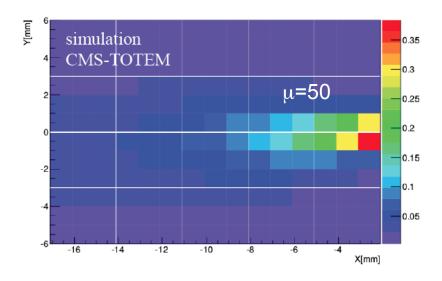
Radiation levels in the detector volume were studied using TOTEM data and simulations


Per 100 fb⁻¹:

- Proton flux up to 5.10¹⁵ cm⁻² in the **pixel detectors**
- 10¹² neq/cm² and 100 Gy in photosensors and readout electronics

Effect of single diffraction pileup

Average proton multiplicity in detectors for WW signal with pilup μ =50 is approx. 2

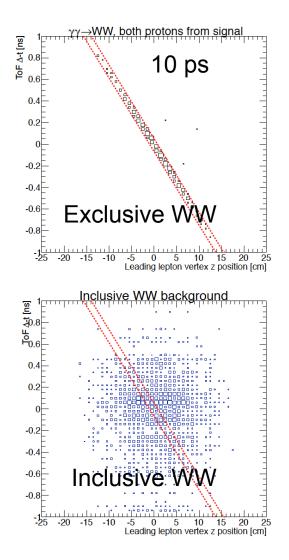


Particle Multiplicity

Expected occupancy:

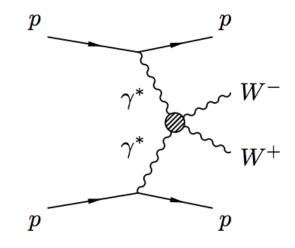
- Beam-related backgrounds and pileup interactions are included.
- Occupancy of detectors at 15 σ • from the beam

Occupancy /mm²



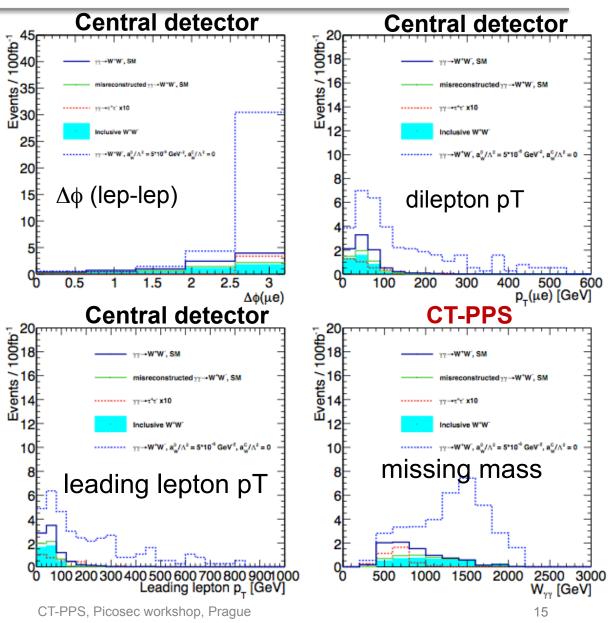
- Use timing to reject pileup background
- Two scenarios were studied:
 - -10ps and 30ps time resolution

High occupancy in baseline timing detector (Quartic 3x3 mm²)


Inefficiency due overlapping hits ~40%

Strong motivation for R&D on new timing technologies

- Study of process: **pp**→**pWWp**
 - Exclusive production of W pairs via photon exchange
- Events: W pair in central detector, intact protons detected in CT-PPS
- Study only eµ final state
- Two steps:
 - 1. SM observation of WW events
 - σ_{WW} =95.6 fb
 - 2. Study of anomalous coupling
 - AQGCs predicted in BSM theories
 - Two points: $a_0^W/\Lambda^2 = 5x10^{-6}$, $a_C^W/\Lambda^2 = 5x10^{-6}$



Kinematical distributions

Missing mass distributions provide a very clear separation of AQGC events

misreconstructed $\gamma\gamma \rightarrow W^+W^-$, SM

 $\gamma\gamma \rightarrow W^+W^-$, $a_w^0/\Lambda^2 = 5*10^{-6} \text{ GeV}^{-2}$, $a_w^C/\Lambda^2 = 0$

 $\gamma\gamma \rightarrow W^+W^-$, SM

 $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$ x10

Inclusive W⁺W⁻

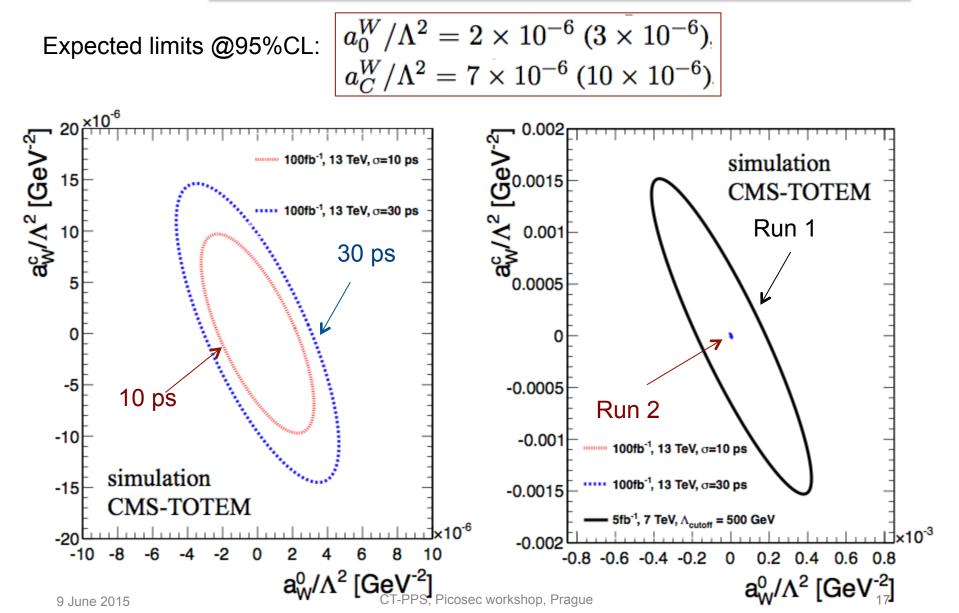
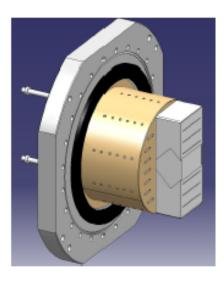

AQGC yields (in fb)

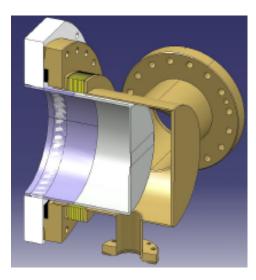
Table 4: Cross section (in fb) for the expected exclusive WW events due to anomalous quartic gauge couplings, for different values of anomalous coupling parameters (a_0^W and a_C^W) after each selection cut (for a timing resolution of 10 ps). In case of different values, numbers in parentheses are for a timing resolution of 30 ps. Only the e μ final state is considered. Statistical uncertainties are shown.

selection	cross section (fb)		
<	$a_0^W/\Lambda^2 = 5 \cdot 10^{-6} {\rm GeV}^{-2}$	$a_C^W/\Lambda^2 = 5\times 10^{-6} {\rm GeV^{-2}}$	
	$(a_C^W = 0)$	$(a_0^W = 0)$	
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	$3.10{\pm}0.14$	$1.53 {\pm} 0.07$	
≥ 2 leptons ($p_{\rm T}>20$ GeV, $\eta<2.4)$	$2.33 {\pm} 0.08$	$1.00{\pm}0.04$	
opposite sign leptons, "tight" ID	$1.82{\pm}0.08$	$0.78{\pm}0.03$	
dilepton pair $p_{\rm T} > 30 {\rm ~GeV}$	$1.69 {\pm} 0.07$	$0.68 {\pm} 0.03$	
protons in both PPS arms (ToF and TRK)	0.52 (0.50)±0.04	0.18 (0.17)±0.02	
no overlapping hits in ToF detectors	0.35 (0.32)±0.03	0.12 (0.11)±0.01	
ToF difference, $\Delta t = (t_1 - t_2)$	0.35 (0.32)±0.03	0.12 (0.11)±0.01	
$N_{\rm tracks} < 10$	0.27 (0.24)±0.03	0.11 (0.10)±0.01	

AQGC expected limits

Beam pockets




- Options considered:
 - Roman Pots (RP) developed by TOTEM
 - Movable Beam Pipe (MBP)
- RP will be tested in the exploratory phase in 2015
- The MBP solution is pursued in parallel
 - low RF impedance option
 - aiming at joint project of LHC collaborations and machine

Roman Pots

- Tests of TOTEM RPs at high luminosity revealed important issues (vacuum, beam dumps, heating).
- Several improvements have been carried by TOTEM (and CMS) in collaboration with BE-ABP.
 - New RF shielding in standard box-shaped RPs
 - New cylindrical RP for timing detectors
 - 10 um thick copper coating
 - New ferrites

Components installed in tunnel

CT-PPS timina

> TCL 4 & TCL 6 in 4-5 and 5-6 Electrical patch panel Service lines for LV/HV/DAQ CT-PPS specific:

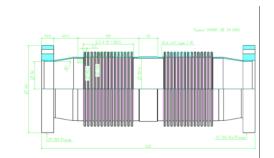
- 2 * RP box with RF shield in 4/5
- 2 * RP box with RF shield in 5/6
- 1 * RP cylinder in 4/5
- 1 * RP cylinder in 5/6

Final goal:

 Establish Roman Pot insertions for physics operation in regular fills from 2016

RP insertion commissioning:

• RP insertions at low beta* and highest beam intensities will be tested in the exploratory phase in 2015.



R&D: Movable beampipe

• Design for MBP main body was developed

- Thin window material evaluated with GEANT simulations
 - Improved secondary/shower production and angular resolution with Be/Be-Al alloy options

- MBP will be connected to LHC beamline by standard double bellows
 - New RF shielding design developed by TE-VSC group

Mean number of secondary tracks / pri

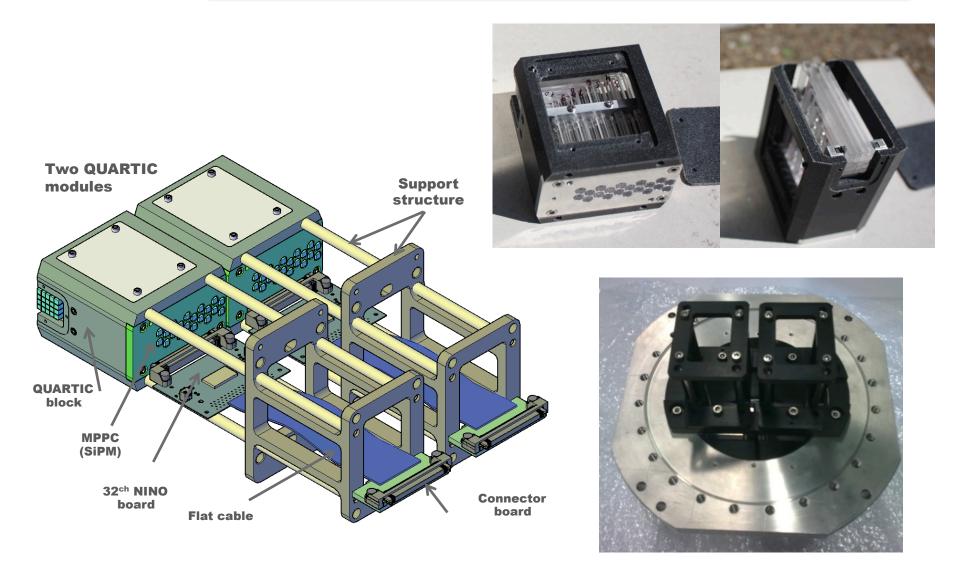
Bervillum

600

800

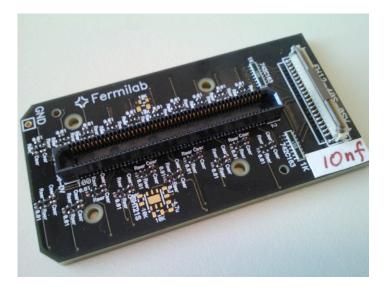
Timing detectors

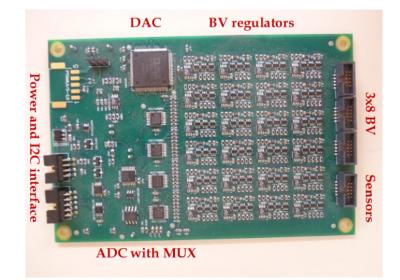
Baseline Timing Detector


Quartic detector:

- Detector is a 4 x 5 array of quartz bars, 3 x 3mm², SiPM light detection.
- SiPMs Hamamatsu MPPC S12572-050
- Two such modules in one Roman pot in each arm.
- L-bar geometry allows SiPMs to be 70 mm from the beam.
- Radiator bars separated by 100 μm for total internal reflection
- Beam tests achieved σ(t) = 30 ps/module (~ 20 ps for 2-in-pot)
- Detectors will be delivered to CERN for August integration and tests.

Quartic module & mechanics

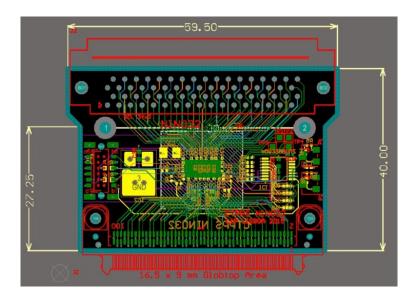

SiPM and Control boards

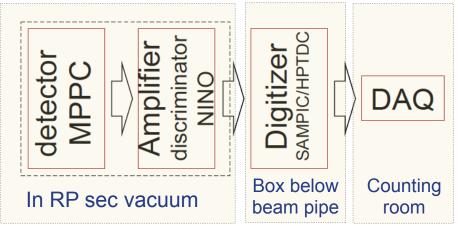

SiPM mounting board:

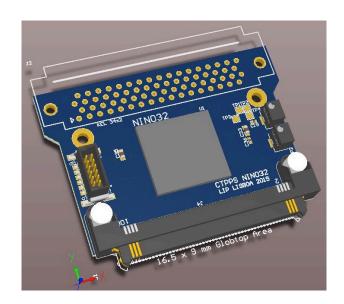
- Connects to MPPCs (100 pin connector)
- Connector with individual Bias Voltages
 and environmental sensor signals
- Ready

SiPM **Control Board** designed for CMS HCAL upgrade:

- Provides SiPMs with individual regulated Bias Voltages
- Measures SiPM leakage currents, temperature and humidity
- I2C controlled
- Available

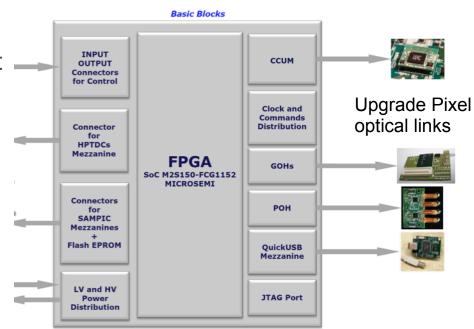



Front-end electronics

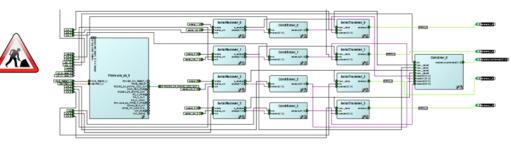

NINO Board:

- based on NINO chip (fast amplifierdiscriminator)
- 32 differential inputs; 32 LVDS outputs
- time resolution ~5 ps
- installed inside RP
- PCB layout ready for production
- Boards expected in July

Quartic readout chain



Digitizer board


- common CT-PPS & TOTEM development
- time to digital conversion (TDC)
- time over threshold measurement (ToT)
- mezzanine board HPTDC/SAMPIC

Board schematics under development

board expected in August

Firmware under development

Timing reference system

Clock distribution with ~1 ps jitter

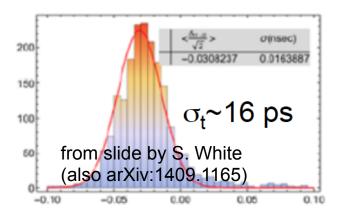
- CMS/SLAC system:
- based on a system in use at SLAC Linac Coherent Light Source (LCLS)
- system expected in November for tests
- install coaxial cable through the bypass (~470 m total length) at Year End TS.

Slave Clock

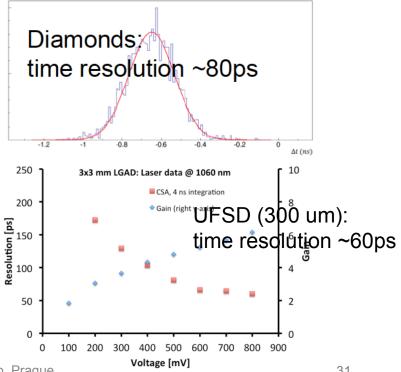
LHC bunch cl

Measurement Un

- Totem/GSI system:
 - based on the optical system for FAIR at GSI
 - full system architecture outlined
 - first system under test


Timing R&D

GasTOF system


- prototype for test beam is on-going
 Diamond detectors
- effort led by TOTEM
- demonstrated 50 ps with 4 planes

Silicon detectors

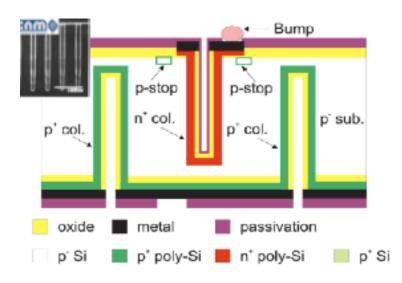
- Fast Silicon Detectors (UFSD):
 - 60 ps with new prototypes (laser)
 - test beam in 2015
- Start exploiting Avalanche PhotoDiodes

CT-PPS, Picosec workshop, Prague

Tracking detectors

Tracking baseline

- 3D silicon sensors (manufactured by CNM)
- PSI46dig ROC, with same readout scheme as for Phase I Upgrade of the CMS pixel system
 - existing CMS DAQ components and software can be reused
- 6 detector planes per station
 - detectors are tilted in one direction
 - number of planes provide adequate redundancy

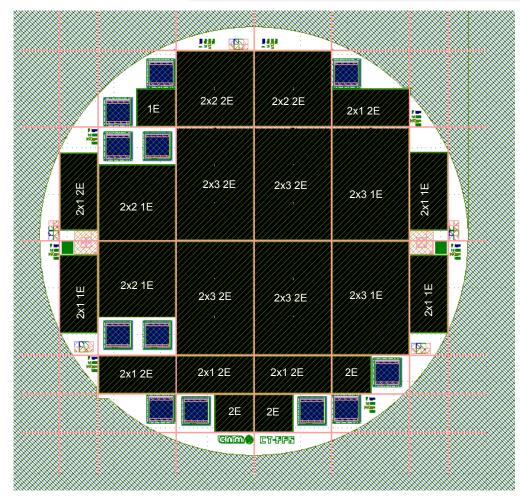


3D sensors by CNM

We are producing:

- 2E pixel configuration, i.e. 2 readout columns [1E as backup]
- 200 µm slim edges
- 2x3 sensors (6 ROCs)

CNM technology as for the ATLAS IBL production:



4" wafers, 230 μ m thickness Double side, not passing through columns Slim edges (200 μ m)

Foreseen yield is ~60%

3D sensors – wafer layout in production

Wafer thickness $230 \,\mu$ m

FZ HR <100> silicon p-type N=10¹²atm/cm³ p-stop isolation

	ZE
6 detectors 2x3	4
4 detectors 2x2	2
8 detectors 2x1	5
4 single chip	3
Diodes	6

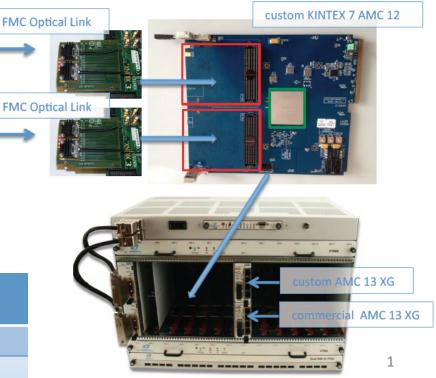
With the first 12 wafers:

• 48 sensors 2x3 & 2E and we need 24

In case of problems we could still mount 2x2 sensors (+ 2x1 sensors)

 $\mathcal{O}\Gamma$

DAQ

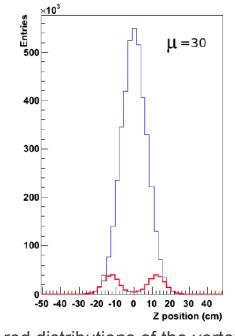

Same readout scheme as Phase-1 upgrade of the CMS Pixel Tracker.

Used both for CT-PPS Timing and Tracking detectors

MicroTCA crate including:

- 2 CTA-FED, 2 CTA-tkFEC, 1 CTApkFEC
- FMC Optical mezzanines

Component	Prod.	Test & Spares	Prelim. Req.
uTCA Crates	1	2	3
AMC13XG	1	2	3
СТА	5	5(*)	10-12
GLIB	0	2(**)	0
FED FMC	3	3-4	6-7
FEC FMC	4	6-8	10-12


9 June 2015

Trigger strategy

- Two-photon physics:
 - the leptonic final states are captured by the CMS lepton triggers
 - The trigger efficiency is expected to be very high given that the lepton thresholds are 30 GeV or below.
 - Final states with hadronic decays of one W or one tau will be accessible using the lepton+jet triggers.

- Hadronic physics
- Large inclusive QCD jet background
- L1 timing trigger selecting events in the tails of the distribution of the collision zvertex

In red distributions of the vertexes separated by at least 1 cm

Summary of project status

- Roman Pots are installed & calibrated in the LHC tunnel at ip5
- Collimators TCL4 and TCL6 are installed
- Plan of insertion tests of RPs at low β^* presented and agreed LPC and LMC
- Quartic fabrication and integration in cylindrical Roman Pot is well advanced
- Quartic electronics is in production (NINO) or final design (HPTDC)
- Production of 3D silicon sensors started at CNM
- PSI46dig ROCs were produced, waiting for wafers testing
- Procurement of Pixel readout and DAQ components is being discussed with CMS Pixel Project and CERN group
- Testbeams scheduled at Fermilab & CERN SPS to study Timing detectors and to study CNM 3D sensors
- Active R&D on several fronts is being pursued