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Habemus novum Boson

An amazing discovery indeed on its own.
It is also the beginning of a new era for HEP
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We need to understand to the best of the capabilities
of the LHC what boson it is we discovered and
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Habemus novum Boson
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Wifs p|ay key role in hisforic find ""'-,‘ UNIVERSITY OF THE WITWATERSRAND,
v JOHANNESBURG

4 July 2012

A Wits team, who plays a visible and strong role in the search for the Higgs boson at the ATLAS detector, is part of a team
of researchers at the European Organization of Nuclear Research (CERN) who today announced that they have observed
a particle consistent with the Higgs boson.

The announcement that started at 09:00 South African time in Geneva, Switzerland, this morning, is hailed as the birth of a
new era in the field of fundamental physics.

According to the Wits team, tantalizing hints of a new particle with a mass around 126 GeV were reported in December
2011. The ATLAS experiment has confirmed this excess with data taken in 2012. This is consistent with reports from the
CMS experiment. The observed excess is consistent with the existence of a Higgs-like particle.

The statistical significance of the measurementis 5 sigma. The size of the statistical significance makes it unlikely that the
excess observed is due to a statistical fluctuation (by less than a one in a million chance).

MEDIA COVERAGE:

Online coverage

Print: (pdf)

http://www.wits.ac.za/newsroom/ne oy e, i 012
WSi"'emS/ZO]. 207/1 6724/news i"'em Beeld, 5 July 2012

Mail & Guardian, 6 July 2012
1 6724 ° html Citizen, 5 July 2012

The Times, 5 July 2012

The Witness, 5 July 2012
Broadcast: (mp3)

Radio Today, 5 July 2012


http://www.wits.ac.za/newsroom/newsitems/201207/16724/news_item_16724.html

Statement from the DST on July 4th 2012

"The Department of Science and Technology selected
CERN as one of its global large-scale infrastructure
projects; it supports scientists in the South Africa-CERN
consortium to participate in experiments to investigate
the existence of the Higgs boson particle and other
expected discoveries. The Department is proud of these
scientists who are part of this major scientific
breakthrough and celebrates this achievement with the
rest of the world.”

A strong boost of the SA-CERN program followed in 2013



Do we live in the P.H.D (Post Higgs Depression) or are

we ready to start digging further into fundamental
guestions of nature?

Atoms
Dark
4.6% Energy
Dark 71.4%
Matter
24%

What can the LHC data tell
us about what’s out there
by means of the Higgs
boson sector?

TODAY



Higgs production at

Hadron Colliders and
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Main Decay Modes
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Consistency with SM 0*
hypothesis

The SM predicts that the Higgs boson have the qguantum number J¢P = O*
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Data show compatibility with
the SM 0* hypothesis while

other alternative hypotheses
considered are excluded at a
confidence levels above 95%
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Exclusion of Spin-2 hypotheses
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Observation of the VBF

production mechanism
at the LHC

The observation of the VBF production mechanism with
the so-called VBF-topology is an important milestone for
the demonstration of the SM-like nature of the coupling
of the newly discovered scalar to EW bosons.
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Exploration of Coupling

Strengths

The ATLAS and CMS experiments perform global fits to their
available data in order to check compatibility with the
Standard Model. Higgs boson couplings are assumed to be
that of the SM and scaling parameters are introduced.



In the standard model there is a physical state, a
Higgs boson with well defined couplings to weak

bosons, fermions and self interactions

2

HHHH : (i)3~4

Self-interaction Fermion
2 =
HHH: (i)3%=& || Hff : (i)=L

The exploration of the coupling to weak bosons plays
now a pivotal role in understanding the nature of the
scalar boson observed experimentally. New physics

can be hidden in these couplings.

21
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Coupling strength to fermions
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Word of caution:

Results related to global fits by the
experiments assume that the Higgs is
produced as it is expected by the Standard CAUTION!
Model. By means of a likelihood formalism

the phase-spaced is reweighted according

to the ratio of Signal to Background (S/B)

Therefore results on global fits above are

to be considered as a consistency check.

Strictly speaking, this approach is not

optimized to search for deviations from

the Standard Model

What happens if we remove these biases and measure fiducial

(no assumptions on how the higgs is produced) Cross-sections?
26



An example of a potential bias introduced by assuming the
Higgs is produced as in the Standard Model.

Fiducial, unbiased cross-sections
When assuming the

o) i p —H, m, =125.4 GeV
Standard Model the %%50;‘;7,}’:; e g+ O o =00%01pb
signal strength of H->Yy & G#omoae costone 0
IS 1.1/ ' m Total uncertainty (scale ® PDF+a,)
when releasing that e —
condition we get 1.42 35] Lo

sof T

Results are still S [
compatible statistically. = = =
More data will be needed 20 -
to understand if the 15t — T L

tension increases.
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The Anomalies
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When measuring the Higgs boson transverse momentum certain
discrepancies were found with the Standard Model
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Brxo [pb]

Excesses in the search for a double Higgs resonance
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Local p
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The CMS experiment has an excess shy of 2 sigma at 275 GeV
in the search forVV, V=2, W.
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Recent Progress in QCD
Higher Order Corrections

How robust is the total gluon-gluon fusion and
differential transverse momentum distribution?
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arXiv:1503.06056v1, C. Anastasiou et al.
First Complete N3LO calculation for the total gluon-gluon fusion cross-

section showing small N3LO/NNLO corrections
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arXiv:1504.07922v1, R. Boughezal et al. First complete calculation of
ggF+1j at NNLO, showing strong reduction of scale variation

Corrections to Higgs p are NNLO — 18000
moderate and up to 25% NLO —— |
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Can the Higgs p+ anomaly be connected with
the excesses at around 300 GeV?
If so, how?

The Phenomenological
Framework

The minimal extension of the Higgs sector

ONLY ONE



Minimal Extension of Higgs sector

dTry to approach the problem as generally as possible.

dThe 2HDM approach, even if more general than MSSM,
remains a model

instead investigating a minimal extension of the Higgs
sector via the introduction of a real singlet and a SU(2)
singlet (DM)

Qintroduce a weakly interactive, stable particle (DM
candidate). H would play, in a sense, the role of a
mediator. The dynamics behind this DM candidate not of
concern now

UFlexible framework that be eventually be mapped to a
flavor of 2HDM, if necessary



If you can’t explain it simply, you
don’t understand it well enough.

The Lagrangian

; Introduce H and X fields with the
L=Lsgy + LBswm Interactions listed below

Lpspy =L +Lp + J.CQ + ).(:Hgg + Lygvv

1 1 1 1
Li = 50, X0"X + S0, HO'H — §M“§{X2 — §M§H2
1 1 1
L7 =——ph*H — —js X?h — —pus X*H
2 2 2
1 21 2 1 21712 1 2 v 2 1 2
Lo=—-MH?h? — X2 X*h* — ~A\3H*X? — _A\4HhX
4 4 4 2
1 S M v
Lrgg = _iﬁg Rhgg G,.G"H
2M? M?2
Luvy = Wﬁw W#W‘U’H I ﬁZ B ZPLZ"LLH



Generated by N.Chakrabarty, T.Mandal and

B.Mukhopadyaya

Parameters and MG5 Feynrules
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Event Generation

Generated complete Gauge invariant set of diagrams.
Suppressed hXX and hhXX couplings to study diagram below

DM

9 \ 1/ Candidate

Effective Hgg -

coupling with \ ------ P R S

same structure as \ Quartic HhXX coupling. This
in the SM
g diagram generates
distortion of h p; spectrum
_ . with kinematically
1 SM Higgs 3constrained production of

DM



H pr and MET Spectra

Events
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How does this hypothesis fit the data?

Templates are fit to the Higgs p, data. Best fit is obtained with
M, =275 GeV with M,=60 GeV. Good fit quality.
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Explaining the excess in the Higgs p, distributions at the LHC
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With the discovery of a new scalar boson at the Large Hadron Collider (LHC) new tasks and
explorations have come to the fore. Global fit studies indicate that the newly observed boson
displays properties consistent with those predicted by the Standard Mode!l (SM). Despite the lack
of signifcant deviations from the SM expectations in these studies, there are certain excesses in the
data that deserve close attention. Among those is the transverse momentum of the Higgs boson and
the results pertaining to searches of di-Higgs boson resonances. The aim of the paper s to explain
some of the excesses simultaneously using a phenomenclogical framework obtained by extending
the SM with a heavy scalar with a mass, my =~ 300CGeV and a dark matter candidate. A fit is
performed that provides a reasonable description of the Higgs boson transverse momentum, favoring
a dark matter candidate of mass in the range of 50-60 GeV, while satisfying cosmelogical constraints.
This inevitably leads to the production of the Higgs boson in association with intermediate missing
transverse momentum and its partial width to a pair of dark matter particles to be small. Another
consequence of this framework is the possible decay of the heavy scalar into VV.V =Z W~_

PACS numbens: 14.80.Bn,14.80.Ec,12.60.Cn, 12.60.Fr

Keywords:
INTRODUCTION

With the discovery of a new scalar boson, k, at the
Large Hadron Collider (LHC) [, 2| new tasks and ex-
plorations have come to the fore. The ATLAS and CMS
experiments have done a superb job exploring the prop-
erties of this new particle and will continue to do so in
the years to come. Both collaborations have performed
global analyses of their data pertaining to the compabil-
ity with the Standard Model (SM). This includes tests
of the spin/CP hypothesis and variations of the Higgs
boson couplings. Overall, the global fit approach indi-
cates that the newly observed boson displays properties
consistent with those predicted by the SM. Despite the
lack of significant deviations from the SM expectations in
these studies, there are certain features in the data that
deserve close attention.

The ATLAS collaboration has recently reported on the
differential distributions using the di-photon [] and the
h —» ZZ* ~» 4¢ [1] decays.! These measurements are
designed to incorporate the least model dependence pos-
sible, as opposed to the global analyses eluded to above.

! The CMS collaboration reported a sPlot signal-weighted distri-
bution of pyy with the h = ZZ* — 4 decay [7]. This result
is not used in this paper due to the complexity of the interpre-
tation. The ATLAS collaboration has recently reported on the
combination of the differential distributions obtained with the
di-photon and the A — ZZ* — &£ decays [(].

Of particular interest to understand the dynamics behind
the production of the scalar bason, is the measurement of
the transverse momentum, pys. The spectra measured
with both decays are compatible with each other and dis-
play certain discrepancies with the prediction from the
SM in the region of intermediate pyy. No significant ex-
cess with pra is seen in the data with respect to the SM
prediction. If related to physics beyond the SM, one can
argue that the discrepancy in the region of intermediate
pra ocould be driven by a not very heavy new particle
whose decays involve A.

Within the current reach of the LHC, it is not possi-
ble to observe the pair production events of the SM Higgs
boson. The ATLAS and CMS experiments have reported
excesses of different degrees in the search for di-Higss bo-
son resonances in the vicinity of 300 GeV involving multi-
lepton, di-photon and bb decavs [7-]. While the excesses
remain far from conclusive, in this paper we consider the
implications of a hypothetical new scalar, H, with a mass
around 300 GeV.

It is tantalizing to connect these two features with a
simple model. The aim of the paper is to explain some
of the excesses simmltaneously using a phenomenclogical
framework obtained by extending the SM with a heavy
scalar with a mass, my = 300CGeV and a dark matter
candidate. The decay of this hypothetical heavy scalar
could accommodate the features ohserved in the search
for di-Higgs boson resonances and the Higgs boson trans-
verse momentum. We adopt a bottom-up approach to
explain the experimental discrepancies simultaneously.
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Prospects for 2015
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What to expect from Run |

| WEATHER FRECASTING STONE

By the end of 2015 we should get
sufficient data to gain sensitivity
comparable to that we gained up until

#|2012. At this point we could confirm the
|excesses and be on the way to a new

discovery

Before summer (Northern Hemisphere)
of 2016 will get sufficient data to
declare discovery, if excesses are
confirmed.




From my summary talk of a workshop in
Pittsburg, January 15t 2012, few months
before the Higgs discovery

Excesses come,
excesses go.

We really hope that this one is
here to stay.
In any case, the future iIs bright!

Same applies now!



