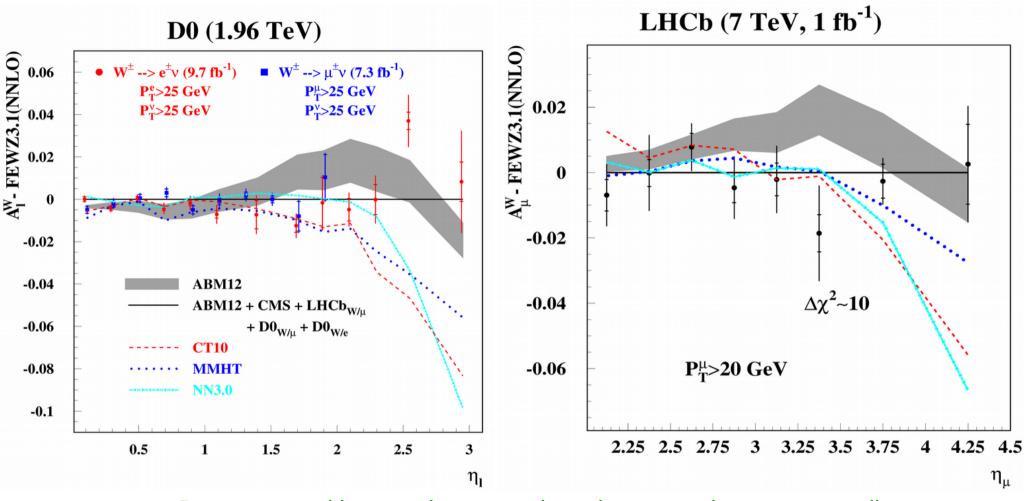
# Higgs c.s. and $\alpha_s$

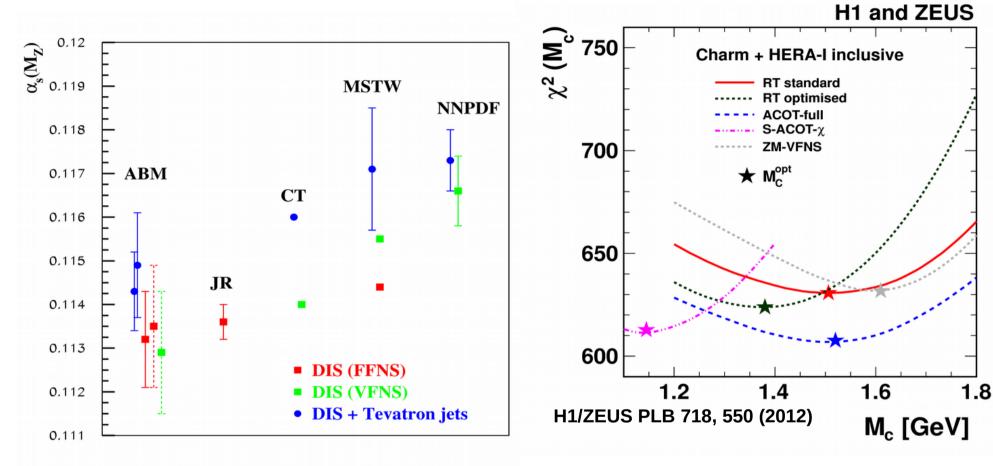
S.Alekhin (*Univ.* of *Hamburg* & *IHEP Protvino*) (in collaboration with J.Blümlein and S.Moch)


## A comparison of ggF at NNLO

|        | CT14     | MMHT2014 | NNPDF3.0 |
|--------|----------|----------|----------|
| 8 TeV  | 18.66 pb | 18.65 pb | 18.77 pb |
|        | -2.2%    | -1.9%    | -1.8%    |
|        | +2.0%    | +1.4%    | +1.8%    |
| 13 TeV | 42.68 pb | 42.70 pb | 42.97 pb |
|        | -2.4%    | -1.8%    | -1.9%    |
|        | +2.0%    | +1.3%    | +1.9%    |

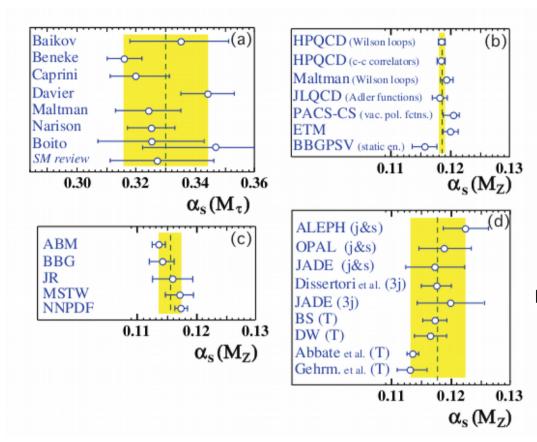
The c.s. is quite stable → argument in favor of validity

How it may change with variation of  $\alpha_{\epsilon}$  and what is reasonable range of this variation?


### DY at large rapidity sa PDF4LHC meeting, Apr 2015



Data are sensitive to valence quarks at large x and to sea at small x


- Good agreement with the ABM predictions/fit in general, although some data point fluctuate significantly
- Other recent PDFs undershoot the data at large rapidity.

# Value of $\alpha_s$ and $m_c$ from PDF fits



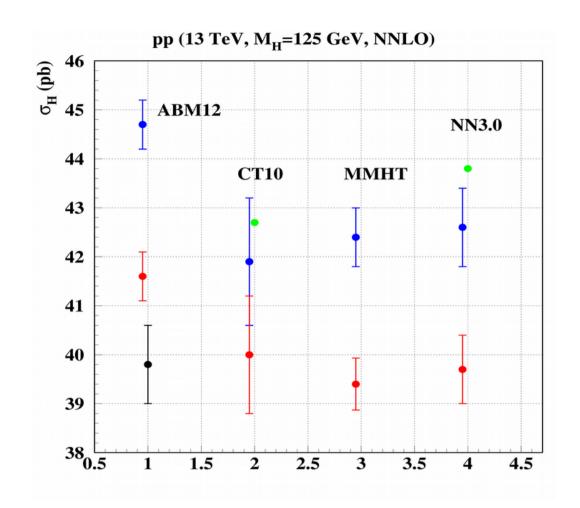
- $\bullet$  Value of  $\alpha_{_s}$  from "truely global PDF fits" is consistent with world average due to impact of jet data
- $\bullet$  For the DIS variant of those fits big spread in  $\alpha_s$  is observed, evidently due to difference in VFNS scheme details (cf. related spread in fitted value of  $m_{_{\! c}})$
- Decrease in  $\alpha_s$  preferred by jet data is foreseen due to impact of the NNLO corrections (10-25%)  $\rightarrow$  in the MMHT14 analysis with the approximate NNLO jet K-factors  $\alpha_s(M_z)$ =0.1172 is pushed up by NuTeV data on xF $_3$  (iron target, power corrections, systematics due to difference in c.s. for (anti)neutrino beams) rather by jets as earlier

# Value of $\alpha_s$ : perspectives



$$\alpha_s(M_z)=0.1172\pm0.0013$$
 (NLO, jets)  
CMS hep-ex/1412.1633

$$\alpha_s(M_z) = 0.1151 \pm 0.003$$
 (NLO, t-quark)


CMS hep-ex/1307.1907

$$\alpha_s(M_z)=0.1123\pm0.0015$$
 (NNLO, e<sup>+</sup>e<sup>-</sup>, C-parameter)

Hoang, Kolodrubetz, Mateu, Stewart hep-ex/1501.04111

- The uncertainty in world average driven by the lattice determination is 0.0006
- Tension between lattice results and other determinations will be probably rising → more conservative estimate of the current uncertainty range is 0.115-0.118

### Higgs c.s. in different scenarios



 $\alpha_s(M_7)=0.118$ , nominal PDFs

 $\alpha_s(M_z)=0.115$ , nominal PDFs

 $\alpha_s(M_z)$ =0.118, PDFs with  $\alpha_s(M_z)$ =0.115

Nominal  $\alpha_s(M_7)$  and PDFs

- ullet A spread in c.s. due to straightforward change in  $oldsymbol{lpha}_{\mbox{\scriptsize c}}$
- Change in the gluon distribution due to change in the fit setting, which can lead both to the change in  $\alpha_s$  and gluons  $\rightarrow$  difficult to estimate in advance, roughly gives smaller effect
- Crude combination of these two gives an uncertainty of ~4 pb (10 %).

#### Summary

The Higgs c.s. for the LHC energy of 13 TeV with account of the uncertainty due to possible variation of  $\alpha_s(M_z)$  by -0.003, within the range preferred by the LHC data on jet and t-quark production, is roughly estimated as laying in the range of 39-43 pb.