Alternative EuCARD-2 dipole status: cos-& and stack designs

Clément Lorin, Maria Durante (CEA) John Himbele (INPG) and all WP10.3 members Third Workshop on Accelerator Magnets in HTS (WAMHTS-3) 10-sept-2015 Lyon, FRANCE

Framework

- Field target: Accelerator-type magnet
 - stand-alone mode + yoke: 5 T
 - insert mode: the more the better
- Constraints:
 - Magnet dimension: 40 mm aperture and 99 mm outer diameter

Contents

- **Cos-∂** design at CEA:
 - 12-mm wide Roebel cable
- Stack design at INPG:
 - 4x4 mm² stack of tapes

Cos-9: Magnetism

- Stand-alone:
 - $J_{o,insulated cable} = 684 \text{ A/mm}^2$
 - 5 T with a yoke

• Insert:

 $J_{o,insulated cable} = 450 \text{ A/mm}^2$ (~20 % loadline margin)

• 13 T + 2.5 T (max) in Fresca2

Bruker J_{e,c tape}

= 1741 A/mm² (5 т, 4.2 к, ∟) = 725 A/mm² (18 т, 4.2 к, ∟)

Cos-9: Quench/Magnetization

- Quench analysis carried out by Erkki Härö and Antti Stenvall (TUT)
 - Standalone: very challenging
 - Insert mode: ok ->
 - see Antti's talk.

- Magnetization analysis carried out by Jeroen van Nugteren (CERN/Twente)
 - "b3, 60 unit's variation at low field reducing to < 20 units at high field.
 b5 and b7 we see ~ 10 units variation, then converge to low values at high field."*

G. Kirby, L. Rossi et al. "Status of the High Current REBCO Roebel Cable Coils for the EuCARD-2 Future Magnets Project" EuCAS 2015, IEEE TAS

Cos-9: Mechanics

- Roebel transverse stress limit: 170 MPa (tests carried out at Twente University)
- Stand-alone stress (no inner shell)

Cos- ϑ : Magnet ends

- Two end designs
 - One spacer for each cable turn (ew: 7.6 mm, hw: 2 m)
 - Conventional design (ew: 7.3 mm, hw: 22 cm)

• Innermost turn path outwards the magnets

- Twist strain: ε ε [-0.16 % ; 0.31%]
- Test at KIT at 77 K coming soon.

Lead end (ew = 7.8 mm; hw = 2.0 m)

Return end

Return end

(ew = 7.6 mm; hw = 2.0 m)

(ew = 7.3 mm; hw = 0.22 m)

Cos-9: Winding tests

- Roebel cable
 - Differential path in magnet ends*

- Longitudinal gap long enough to absorb: winding variation, assembling mis-placement, punching precision...)
- Similar behavior for both ends
 - Keep the conventional way as baseline

Conductor length 20 m per coil

*J. Fleiter et al. "On Roebel Cable Geometry for Accelerator Magnet", EuCAS 2015

Stack: Magnetism

• 23 turns/coil

CERN

Parameter		Value
Centrer field Bo		5 - 17.2 T
Current density J _{op}		535 - 650 A/mm²
Field quality	B ₃	0.8 unit
	B_5	0.5 unit
Block-coil size	4 x 4 mm²	
Conductor area/half coil		368 mm²
Inner - external tube		2 - 4 mm

) INFN

Istituto Nazionale di Fisica Nucleare

Grenoble

Stack: Transposition

- Stack of tapes ≠ Roebel or Rutheford
 - Partially transposed

• Transposition in magnet ends

Stack: Magnet ends

• Connections outside magnet

Stack: Mechanics

• Mechanical analysis carried out by Chhon Pes and Philippe Fazilleau (CEA)

Stack: Mechanics

- Total von Mises stress distribution
 - Max deflection ~ 100 μm

Max Von Mises stresses (MPa) in different parts of structure

Component	Cooldown	Magnetic forces	Total
Conductor	342.5	295	511.7
CuBe	293.6	351.2	585.5
Plate – SS316	444	376.3	699.5
Titanium	325.8	431	460.75
External tube	311.9	168.6	429.15

Max Von Mises allowable stresses (MPa) in different parts of structure

	Material	Yield stress(MPa)	Allowable stress(MPa)
	SS 304	890	593
	SS 316	980	653
	CuBe	1077	718
	Titanium	1200	800

EUCARD²

• Shear stress in conductor

CĒRN

Grenoble

• 49 MPa with sliding, 188 MPa no sliding

INFN

DANISH

TECHNOLOGICAL INSTITUTE

Conclusion

- Cos-& design
 - 5 T standalone, an extra 2 T possible as insert
 - Inner shell reinforcement
 - End design (conventional way)
 - Path outwards the magnet (to be tested at KIT)
 - Protection to be deeply investigated
 - Tooling development (drawing office working on it)
- Stack design
 - > 5 T in standalone, an extra 4.2 T possible as insert
 - End design with transposition
 - Mechanical fine tuning to be done
 - Winding test coming soon

