GROUP OF APPLIED SUPERCONDUCTIVITY

NZPV and MQE from electrical and thermal properties of commercial REBCO tapes

Marco Bonura and Carmine Senatore

WAMHTS 3 – Lyon – 11 September 2015

High-field *k* studies in technical SCs

At University of Geneva, we developed a new experimental setup to investigate κ in superconducting wires and tapes with *B* up to 21T.

$$\kappa \propto \frac{Q}{\Delta T}$$

Control of all possible spurious thermal losses (conduction, convection, irradiation).

Very high sensitivity at T<40K. $\Delta T \sim 1$ mK - 100mK.

High-field κ studies important for:

- Magnet design (stability);
- Tailoring conductors to meet specific requirements.

Investigated Coated Conductors

Manufacturer	Dimensions (w x t)	Substrate	Type of stabilization	% of Cu
AMSC	4.8 x 0.20 mm ²	NiW	Cu laminat. on 2 sides	51%
BHTS	4.1 x 0.15 mm ²	SS	Cu electroplated	20%
Fujikura	5.1 x 0.16 mm ²	Hastelloy	Cu laminat. on 1 side	44%
SuNAM	4.0 x 0.11 mm ²	Hastelloy	Cu electroplated	34%
SuperOx	4.0 x 0.09 mm ²	Hastelloy	Cu electroplated	27%
SuperPower	4.0 x 0.10 mm ²	Hastelloy	Cu electroplated	40%

In-field Longitudinal k

M. Bonura, C. Senatore, SUST 28 (2015) 025001

Longitudinal *kat B=0*

Manufacturer	<i>RRR_{Cu}</i> [<i>fit</i>]	RRR_{Cu} [$\rho(T)$]	$\frac{S_{Cu}}{S_{tot}}$
AMSC	20	19	0.51
BHTS	14	17	0.20
FUJIKURA	62	59	0.44
SUNAM	69	61	0.34
SUPEROX	13	14	0.27
SUPERPOWER	39	42	0.40

$$k_{meas} = \sum_{i} k_{i} \frac{S_{i}}{S_{tot}} \approx k_{Cu} \frac{S_{Cu}}{S_{tot}}$$

 $k_{Cu} = f(RRR_{Cu})$ [N. J. Simon, NIST]

M. Bonura, C. Senatore, SUST 28 (2015) 025001

In-field Longitudinal k

Cu/non-Cu and RRR_{Cu} determine different field-induced reductions

M. Bonura, C. Senatore, SUST 28 (2015) 025001

Thermal Stability Evaluation

May we deduce reliable information on MQE and NZPV from κ studies?

Works for foundation. Venice, XVI century.

Normal Zone Propagation Velocity

«Normal Zone Propagation in a YBCO Superconducting Tape» Author: J. van Nugteren; Supervisor: Dr. M.M.J. Dhallé

Adiabatic theory for NZPV

From the solution of the transient heat conduction equation in an adiabatic environment assuming that the normal zone can be represented by a translating coordinate system moving at *NZPV*.

$$NZPV_L \approx \frac{I}{S_{Tot}} \left[\frac{1}{\rho(T_S)\kappa_n(T_S)} \left(C_n(T_S) - \frac{1}{\kappa_n(T_S)} \frac{d\kappa_n}{dT} \right]_{T=T_S} \int_{T_{op}}^{T_S} C_S(T) dT \right) \int_{T_{op}}^{T_S} C_S(T) dT \right]^{-1/2}$$

In case of T-independent parameters $NZPV_{L} \approx \frac{I}{S_{Tot}} \left[\frac{\rho(T_{S})\kappa(T_{S})}{C_{n}C_{s}(T_{S} - T_{Op})} \right]^{\frac{1}{2}} \approx \frac{I}{S_{Tot}} \left[\frac{LT_{S}}{C_{n}C_{s}(T_{S} - T_{Op})} \right]^{\frac{1}{2}} \qquad Ok \text{ for LTS}$ $\rho(T) = \text{ constant in the } T \text{ range of interest:}$ $NZPV_{L} \approx \frac{I}{S_{Tot}} \left[\frac{1}{LT_{S}} \left(C_{n}(T_{S}) - \frac{1}{T_{S}} \int_{T_{Op}}^{T_{S}} C_{S}(T) dT \right) \int_{T_{Op}}^{T_{S}} C_{S}(T) dT \right]^{-\frac{1}{2}}$

Whetston and Roos, J Appl Phys, **36** 783 (1965); Zhao and Iwasa, Cryogenics **31**, 817 (1991); Grabovickic *et al.*, IEEE Trans Appl. Supercond. 13 (2), 1726 (2003).

Adiabatic theory for NZPV

M. Bonura

Critical Current: Scaling Law

M. Bonura

Specific Heat of REBCO tapes

Specific Heat data of REBCO CCs from different manufacturers

Calculated NZPV

UNIVERSITÉ DE GENÈVE

M. Bonura

NZPV: comparison with experiment

Minimum Quench Energy

GROUP OF APPLIED SUPERCONDUCTIVITY

Many thanks for your attention

Marco Bonura

Normal Zone Propagation Velocity

The experimental determination of $NZPV_T$ is much more complex than that of the longitudinal $NZPV_L$.

M. Bonura, C. Senatore IEEE TRANS APPL SUPERCOND 25 (3) 6601304 (2015)