Max T **Optimisation of** 200 **CLIQ for HTS** 150 100 🎙 50 1.8 [ime [s] 11 September 2015 **Emmanuele Ravaioli (CERN, University of Twente)** Jeroen Van Nugteren (CERN, University of Twente) Thanks to H.H.J. ten Kate, G. Kirby and A.P. Verweij UNIVERSITY OF TWENTE.

k

l am not an expert of HTS!

Emmanuele Ravaioli, Jeroen Van Nugteren

HTS – Challenges for effective quench protection

Very low normal-zone propagation velocity (~cm/s): bad for detection, bad for protection

Very high margin to quench (~J/cm^3): good for stability, bad for protection

Slower quench detection

Faster rise of the hot-spot temperature

Less homogeneous transition to the normal state: Thermal stress (?), Less uniform coil-to-ground voltages

What is CLIQ

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

WAMHTS-3 - 11 September 2015

4

A <u>different mechanism</u> for depositing <u>heat</u> in superconductors with respect to QH

(in multi-filamentary LTS strands, this mechanism is very effective)

An <u>electrically robust</u> system, mainly <u>external</u> to the coil, hardly interfering with the coil winding technology

...and what it requires

Study of complex interdependent <u>electro-magnetic</u> and <u>thermal</u> effects, on very <u>different scales</u> (filaments, strands, tapes, cables, main circuit)

Additional **terminals** connected to the coil to protect

...and "fast" transitory losses !! (i.e. with small time constant)

AC loss in HTS

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

HTS strands/tapes

Figures and information from Luisa Chiesa's plenary talk at ASC 2014

MgB₂ strand (Cu matrix)

HTS cables (Slide from Luisa Chiesa's talk at ASC2014)

Transitory losses in HTS conductors

The target of a CLIQ-based protection system is generating enough transitory losses to transfer most of the coil to normal state <u>in 10-20 ms</u> Hence, "fast" losses are needed

Inter-filament coupling loss: Usually features an ideal time constant for heating up the superconductor very effectively with a CLIQ discharge ...but not present in tapes, by definition! (if not striated)

Inter-strand or inter-tape coupling losses: Whilst often higher in amplitude, they are typically too slow for heating up the coil in <20 ms Too slow

Hysteresis losses (intentionally unspecific term here): No time constant involved, potential for effective mechanism, but the amplitude of the oscillating field must be high To measure and/or model on a case-by-case basis

CLIQ optimization (valid for any magnet)

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

Some rules of thumb for CLIQ power and energy deposition

Coupling losses per unit volume are proportional to (dB/dt)^2	Hysteresis losses per unit volume are dependent on $\Delta B (\alpha \Delta B^3)$
dB/dt is proportional to U ₀	ΔB is proportional to U ₀
dB/dt is proportional to N _{CLIQ}	ΔB is proportional to $(N_{CLIQ})^{0.5}$
dB/dt is proportional to 1/L _{eq} and L _{eq} can be reduced by 10+ times by optimizing the discharge circuit	ΔB is proportional to (1/L _{eq})^0.5 and L _{eq} can be reduced by 10+ by optimizing the discharge circuit
dB/dt is independent of C	ΔB is proportional to C^0.5
dB/dt distribution can be optimized	ΔB distribution can be optimized
In any case, the total energy delivered to the coil is < 0.5 $N_{CLIQ} C U_0^2$	
CLIQ typically introduces up to dB/dt~10²-10³ T/s and ΔB~10⁻¹-10⁰ T and <u>orientation very different</u> from the field lines when powering in DC	

Example of CLIQ optimization (Dipole geometry)

· · · · · ·

Example of CLIQ optimization (Block-coil geometry)

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

WAMHTS-3 - 11 September 2015

14

Optimizing CLIQ – Different magnet geometries

Golden rules

Subdividing the coil in multiple sections

Introducing opposite current changes in coil sections that are physically adjacent

This looks beautiful but where's the catch?	
Increase of U ₀	Increase of peak <u>voltages to</u> <u>ground</u> in the circuit (<1 kV?)
Addition of CLIQ units	Needs additional CLIQ terminals
Optimization of the discharge circuit (positioning of CLIQ leads, order of the coil sections, etc)	Typically requires addition of CLIQ terminals <u>between magnet layers</u> (less obvious to manufacture)

<u>No real bottleneck</u> for increasing dB/dt introduced with CLIQ by 10+ times, i.e. <u>increasing coupling loss by 100+ times</u> with respect to present CLIQ systems achieving very good performance on LTS coils

...providing the rules of

the game don't change! \rightarrow

Possible game changers

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

WAMHTS-3 - 11 September 2015

17

Game changers

If filaments are present, but matrix has very high transverse resistivity, compensate with longer filament twist-pitch

If filaments are present, but matrix has <u>very low transverse resistivity</u>, not possible to compensate with shorter filament twist-pitch (IFCL time constant too large), compensate with filament-matrix barrier (?)

If **<u>filaments</u>** are not present, no inter-filament coupling loss

If very low/high <u>hysteresis losses</u> are generated for a given ΔB , performance can change dramatically (you'll see an example soon)

If current density depends on the **magnetic-field direction**, the transition to the normal state can be achieved with smart field-changes

Use a different type of CLIQ system based on **<u>external excitation coils</u>** (see last part of the presentation)

First study case of CLIQ on HTS (Ravaioli & Van Nugteren)

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

Study case: 7 T block-coil dipole insert, YBCO Roebel cable

- •Block-coil
- •4 layers
- •R=25 mm aperture
- •5 meter long
- Nom current 4880 A
 Peak dipole field ~7 T
 Background field 13 T
 Insulation 0.1 mm
- •YBCO, Roebel cable •15 tapes
- •12x0.8 mm^2
- •Je=400 A/mm^2

Study jointly performed by E. Ravaioli and J. Van Nugteren

Current and magnetic-field changes introduced by CLIQ

Study jointly performed by E. Ravaioli and J. Van Nugteren

Magnetic-field changes introduced by CLIQ

Temperature profile in two adjacent tapes

t = 1250.02 s, I = 5169.94 A, Bx = -1.13 T, By = -15.48 T, Bz = 0.00 T

Deposited loss (Hysteresis+Ohmic) and Temperature

Next steps to conclude the analysis

Study the interaction between stacked cables

Run similar simulations for tapes in different locations of the coil

Complete electro-thermal simulation

(Loss \rightarrow Temperature \rightarrow Quench \rightarrow Resistance \rightarrow Magnet discharge)

Study the effect of losses on the differential inductance

For LTS, all steps done and model validated For HTS, some work is still needed...

CLIQ with external excitation coils

Emmanuele Ravaioli, Jeroen Van Nugteren

Optimisation of CLIQ fot HTS

CLIQ with external excitation coils

Emmanuele Ravaioli, Jeroen Van Nugteren

CLIQ with external excitation coils – Multi-Solenoid

CLIQ: Mature technology for LTS magnets

<u>Optimization</u> methods presented (U₀, N_{CLIQ}, terminal positioning, C, excitation coils)

With inter-filament coupling loss, increasing the <u>CLIQ power deposition</u> by <u>100+ times</u> with respect to present systems are <u>within reach</u>

<u>**Different loss mechanisms</u>** (particularly in cables) could be game changers (either way..)</u>

Way to go: Collaborations between experts of CLIQ protection and AC losses in HTS (loss measurements, modeling, CLIQ optimization, circuit simulations,...)

QUESTIONS?

Emmanuele.Ravaioli@cern.ch

Multi-filamentary wires/strand: inter-filament coupling loss

<u>Same physics</u> as inter-filament coupling loss in LTS, but different material properties

$$\frac{P_{IF}}{vol} = \left(\frac{l_p}{2\pi}\right)^2 \frac{1}{\rho_{eff}(B)} \left(\frac{dB}{dt}\right)^2$$
$$\tau_{IF} = \frac{\mu_0}{2} \left(\frac{l_p}{2\pi}\right)^2 \frac{1}{\rho_{eff}(B)}$$

Filament twist-pitch and effective <u>transverse</u> resistivity of the matrix are the key parameters

Hysteresis loss