No Protection Device: No-Insulation HTS Magnets

Seungyong Hahn

Applied Superconductivity Center National High Magnetic Field Laboratory Department of Mechanical Engineering Florida State University

> WAMHTS-3 Lyon, France

September 11, 2015

Stability Margin: LTS vs. HTS

• Stability Margin [J/m³]:
$$\Delta e_h = \int_{T_{op}}^{T_{cs}(I_{op})} C_{cd}(T) dT$$

	LTS	
$T_{op}\left[\mathbf{K}\right]$	$[\Delta T_{op}(I_{op})]_{st}$ [K]	$\Delta e_h \left[{ m J/cm^3} ight]$
2.5	0.3	1.2×10^{-4}
4.2	0.5	0.6×10^{-3}
4.2	2	3×10^{-3}
10	1	9×10^{-3}

	HTS	
$T_{op}\left[\mathbf{K}\right]$	$[\Delta T_{op}(I_{op})]_{st}$ [K]	$\Delta e_h \left[{ m J/cm^3} ight]$
4.2	25	1.6
10	20	1.8
30	10	3.7
70	5	8.1

 \checkmark > 100 times larger stability margin of HTS magnet than that of LTS

S. Hahn <shahn@fsu.edu>

Disturbance Energy Spectra

✓ Low stability margin and consequent premature quench are major problems of NbTi magnets
 ✓ In contrast, HTS magnets having "large stability margin" rarely quench.

Major sources for HTS magnet quenches: 1) accidental failure; 2) unexpected "local" defect

Protection Challenge of HTS Magnet and NI HTS Winding Technique

No-Insulation HTS Winding Technique

INS: Difficulty in Protection

- □ Slow normal zone propagation in HTS
 - → Slow quench detection
- □ Larger enthalpy (stability margin) of HTS
 - → Difficulty in "activate-heater" protection

REF: S. Hahn, D. Park, J. Bascuñán, and Y. Iwasa, "HTS Pancake Coil without Turn-to-Turn Insulation," *IEEE Trans. Appl. Supercond.*, vol. 21, pp. 1592 – 1595, 2011.

S. Hahn <shahn@fsu.edu>

No-Insulation HTS Magnet WAMHTS-3, Lyon, France (September 11, 2015)

NI: "Quench Current Bypass"

"Automatic bypass" of quench current through turn-to-turn contacts

Comparison of Spatial Field Distributions between NI and Insulated Coils

An REBCO NI Magnet (2012) 0.15 - Stack of 2 double pancake coils Axial Field along the DP12 Axis, B_z - Wound with "no-stabilizer" tapes 0.10 30A Calculation (INS) 30A Measurement (NI) 10A Calculation (INS) 10A Measurement (NI) 0.05 0 0.00 -10 -5 -15 0 5 10 15 Ć Displacement from the DP12 Center, z [mm]

Axial fields measured along the magnet axis at operating currents of 10 A and 30 A.

Barely discernible difference (by a Hall sensor) in spatial field distributions between an NI coil and its insulated counterpart (numerical simulation).

□ Need for further investigation on the spatial field distributions for NMR applications

"Bypass" of Quench Current through Turn-to-Turn Contacts

□ "A": Initial local quench ($R_{\theta} > 0$) at Ic; start of field saturation ($I_R \approx 0$; $I_p \approx I_{\theta}$)

□ "B": Full quench; no more field increase after this point

 \Box "C": $I_{\rho}(125 \text{ A}) >> I_{c}(38 \text{ A})$; $(I_{\theta}: 23 \text{ A}, I_{R}: 102 \text{ A})$

□ Short sample burned at 61 A in liquid nitrogen

"Survival" of an NI REBCO Coil at 1580 A/mm²

Comprehensive Numerical Analysis

Partial Element Equivalent Circuit (PEEC) Model for Transient Electromagnetic and Thermal Analysis of NI Coil (2014)

- REF: T. Wang, S. Noguchi, X. Wang, I. Arakawa, K. Minami, K. Monma, A. Ishiyama, S. Hahn, and Y. Iwasa, "Analyses of Transient Behaviors of No-Insulation REBCO Pancake Coils During Sudden Discharge and Overcurrent," *IEEE Trans. Appl. Supercond.*, 25, June 2015 (4603409).
 - S. Hahn <shahn@fsu.edu>

Progress in No-Insulation Magnets

8.7-T/91-mm REBCO 9-T/78-mm MW REBCO 26-T/35-mm MW REBCO (2014, MIT-FBML) (2014, MIT-FBML) (2015, SuNAM/MIT/FSU)

- Coil OD: 119 mm
- Survived after quench at J_e of 510 A/mm²

S. Hahn <shahn@fsu.edu>

- Coil OD: 101 mm
- Survived after quench at J_e of 895 A/mm²

- Coil OD: 172 mm
- Survived after quench at J_e of 392 A/mm²

8.7-T/91-mm Insert1 Test Results at 4.2 K

- Operation in Liquid Helium at 4.2 K (Charging Rate: 2.1 A/min)
- □ Accidental power supply failure at 235 A (510 A/mm²): the magnet survived

No-Insulation HTS Magnet WAMHTS-3, Lyon, France (September 11, 2015)

7-T/78-mm MW-NI Magnet Test Results at 4.2 K

- Tests in Liquid Helium at 4.2 K
- Surpassed the designed field strength of 7 T and reached 9 T
- □ Magnet quench at 9 T (895 A/mm²): the magnet survived

26-T/35-mm MW-NI Magnet Test Results at 4.2 K

26-T/35-mm MW-NI All-REBCO Magnet

Designed by S. Hahn; constructed and firstly tested by SuNAM

Parameter		M1	M2	M3	M4	M5			
Magnet Configuration									
Average tape width	[mm]	4.1	5.1	6.1	7.1	8.1			
Average tape thickness	$[\mu m]$	146	145	135	138	135			
Pancake-pancake spacer [m				0.2					
Coil i.d.; o.d.	[mm]		35.	35.0; 171.9					
Overall height [mm		327							
Number of DP		10	4	4	4	4			
Turn per DP			916	996	968	984			
Conductor per DP	[m]	297	298	324	315	320			
Total conductor	$[\mathrm{km}]$	3.0	1.2	1.3	1.3	1.3			
Operation and Performance									
Magnet constant [mT/A]		109.2							
Operating temperature [K]		4.2 (liquid helium)							
Current density at 26.4 $T[A/mm^2]$			327	293	247	221			
Inductance, L [H]		12.79							
Peak B_{\perp}	[T]	1.54	1.59	1.82	2.08	3.68			
Time constant (77 K), τ_c [sec]		947 (12.79 H/13.5 m $\Omega)$							
Peak hoop stress at 26.4 T [MPa]				286					

S. Hahn <shahn@fsu.edu>

26-T/35-mm MW-NI All-REBCO Magnet

- First LHe (4.2-K) Test at SuNAM, Co., Ltd.
- □ Current ramping rate: 0.01 A/s
- □ 26.4-T (a record high in all-HTS magnet) at 242 A.

- $0 \rightarrow 200$ A; 0.01 A/s for $200 \rightarrow 235$ A
- The magnet survived after two consecutive quenches.

No-Insulation HTS Magnet WAMHTS-3, Lyon, France (September 11, 2015)

0.2

0.1

0.0

-0.1

-0.3

-0.4

ensor

Š -0.2

Hall

175

150

125

100

75

50

25

2nd Quench Test

100 125 150 175 200 225 250

Time [min]

Current [A]

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

0

25

50

75

Passive Protection: Self-Protecting Magnet

Test Example of an "isolated" and "nested" 2-coil magnet [Case Studies 2nd Edition]
 (A): Initial quench in Coil 1 and initial increase of I₂ by the flux conservation

- \checkmark (B): Induced quench in Coil 2 and consequent increase of I_1
- \checkmark (C): V1+V2=10 V (power supply max voltage) and consequent decrease of I_1 and I_2

7-T/78-mm MW-NI Magnet Test Results at 4.2 K

- "Self-Protecting" Behavior due to "Electromagnetic" Quench Propagation between Pancakes
 □ Initial quench at DP9 → the DP9 voltage increase
- \Box Field maintained by the induced currents in "healthy" coils \rightarrow healthy coil voltage decrease
- \Box Quench in the healthy coils \rightarrow all coil voltage increase

Summary: What Have Been Learned

- 1. Single Coil
 - Key mechanism for electro-thermal self-protecting (no burn-out): "Quench current bypass" through turn-to-turn contacts
 - Experimental demonstration: >100 NI REBCO coils have been tested including one survived after a quench at 1580 A/mm² in liquid helium at 4.2 K.
 - Simulation: An equivalent circuit model has been successfully used for charging analyses; Comprehensive simulations have been proposed by multiple groups.
- 2. Stack-of-Double-Pancake Magnet
 - Key mechanism: Electromagnetic (thus fast) energy transfer between coils
 - Experimental demonstration: to date, 7 NI REBCO magnets have been built and tested; all of them survived after multiple over-current quench tests.
 1) 8.7-T/91-mm REBCO Insert (MIT, 2014);
 2) 9-T/78-mm All-REBCO Magnet (MIT, 2014);
 - 3) 26-T/35-mm All-REBCO Magnet (SuNAM/MIT/FSU, 2015)
 - *Simulation:* No magnet-level simulation has been reported so far.

Backup Slides

Winding Tension and Characteristic Resistance

N-1

N-1

 $R_{R} = \sum_{i=1}^{N} R_{i} = \sum_{i=1}^{N-1} \frac{R_{ct}}{2\pi r_{i} w_{d}}$

- Characteristic Resistance: R_R (sum of turn-to-turn contact resist.)
 - $R_{\rm ct}$ [$\Omega \cdot \rm cm^2$]: average surface contact resistance (10 – 70 u Ω ·cm²)
- Impact of Winding Tension on R_R
- Sudden discharge tests of an NI coil wound with 4.1-mm wide, 0.1-mm thick REBCO tapes

<shahn@fsu.edu>

WAMHTS-3, Lyon, France (September 11, 2015)

L_{HTS}

 R_{θ}

 R_R

- Charging time constant: 20 minutes for 26-T/35-mm; 15 hours for 60-T/40-mm
- \sim -5 times faster charging time constant of PI than that of NI, measured in LN2 at 77 K¹.
- \sim ~12 times faster charging time constant of MCI than that of NI, measured in LN2 at 77 K².
- □ Self-protecting demonstrated in LN2 at 77 K but *not in LHe at 4.2 K*
- REF 1: Y. H. Choi, S. Hahn, J.-B. Song, D. G. Yang, and H. Lee, "Partial insulation of GdBCO single pancake coils for protection-free HTS power applications," *Supercond. Sci. Technol.*, 24, 2011 (125013).

REF 2: SuNAM, a report on test results of REBCO coils wound with stainless steel coating tapes, July 2015.

S. Hahn <shahn@fsu.edu>