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Introducing the main characters
1. A Signal, e.g:

2. A particle detector

3. The convolution theorem.

Heavy H→W+W-, lepton + jets
,

single top t-channel
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The signal
The purpose of the analysis is to measure an angular distribution dnΓ/dΩn. 

The reason for studying the angular distribution is: sensitivity to coupling constants
in the decay, particularly anomalous couplings, which would be a sign of new physics.

The Wtb
vertex. 

The HWW
vertex. 

In particular we concentrate on signatures with a single neutrino  in the final sate:

* Resolution effects are large.
* But the final state can be fully, if not precisely, reconstructed. 

Single top t-channel w/ leptonic decay, √s=14 TeV generated with PROTOS.
 
H(200 GeV) ->W+W- , lepton+jets mode, √s=14 TeV generated with PYTHIA8. 

arXiv:1505.05516

 Nucl.Phys.B840:349-378,2010

LWtb = � gp
2
b̄�µ(VLPL + VRPR)tW

�
µ � gp

2
b̄
i�µ⌫q⌫
MW

(gLPL + gRPR)tW
�
µ + h.c.

LHWW = m2
W

✓p
2GF )

1/2(1� g2v

2⇤2
f�,2)

◆
HW+

µ W�µ +
g2v

2⇤2

fW
2

(W+
µ⌫W

�µ@⌫H + h.c)� g2v

2⇤2
fWWW+

µ⌫W
�µ⌫

3 Comput. Phys.Commun. 191 (2015) 159

https://jaguilar.web.cern.ch/jaguilar/protos/manual.ps

https://jaguilar.web.cern.ch/jaguilar/protos/manual.ps


The detector
We demonstrate a technique with a
simple detector simulation:

Very simple smearing of the neutrino
energy and direction are applied:

σ(ET) = 0.5√ET. in both x, y directions.

Neutrino pz obtained from the W mass
constraint; quadratic ambiguity solved
by optimizing the reconstructed top
(Higgs) mass. 

Cuts applied on pT of lepton, 
and jets ETmiss, lepton isolation, detector
acceptance.  

These isolate the lepton + jets signal. 
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The convolution theorem

Define convolution

Express in terms of 
Fourier transforms

Rearrange

Discern a δ-function

Collapse an integral

Conclude…

The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms.  

Used in signal processing.  Proof is simple: 
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Formulated more abstractly, we can imagine that convolution theorem 
works with any set of basis functions, not just complex exponentials.
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The above paper
addresses the issue of 
facial recognition under
different lighting conditions.

Sound familiar? 

Origin of the Funk-Hecke
theorem.

First practical 
application?

Convolution on a sphere

http://link.springer.com/journal/208
http://link.springer.com/journal/208/78/1/page/1


Angular analog: the Funk-Hecke theorem 
Describes the effect of isotropic 
angular smearing on an angular
distribution dΓ/dΩ.

The proof of this theorem is not hard either.

But the theorem is not sufficient for our purposes 
and we will have to “roll our own”

signal

detector
effects
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We use an orthogonal function called an M-Function, a function 
of three angles built from spherical harmonics:

Mm
k,l(✓1, ✓2,�) =

p
2⇡Y m

k (✓1, 0)Y
m
l (✓2,�)

=
p
2⇡Y m

k (✓1,�)Y
m
l (✓2, 0)

These functions:

• are orthogonal
• are complete
• obey Gaunt’s theorem. 
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Here is a visual picture of M-function projections:

a000(s)  a100(a) a010(s) a110(a) a111(a)

a1,1,-1(a) a0,2,0 (s)

a1,2,-1(a)

a1,2,1(a)

The qualifiers (a) and(s) mean
that the distribution is 
asymmetric or symmetric in
θ1

Difficult to display three
variables in a graph.  We
show θ2 vs φ in these plots.

10



Properties of M-functions
Z

Mm
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m0⇤
k0,l0 (✓1, ✓2,�)d⌦

M = �k,k0�l,l0�m,m0

where d⌦M = sin ✓1 sin ✓2d✓1d✓2d�

Orthogonality:
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Gaunt’s theorem: 

Complex conjugation

Mm
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m0

k0,l0(✓1, ✓2,�) = Wm,m0,M
k,l,k0,l0,L,KMM

K,L(✓1, ✓2,�)

I.E, if I have to multiply two M-functions, I can write the product as a sum of M-functions.
 
The known coefficients Wk,l,k’,l’,L,K m,m’,M can be expressed in terms of Gaunt coefficients and
the Gaunt coefficients in Clebsch-Gordan coefficients:  gory details in the hidden slide. 
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Gory details, Gaunt expansion

Wm,m0,M
k,l,k0,l0,L,K =

p
2⇡Gm,m0,M

k,k0,K Gm,m0,M
l,l0,L
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s
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4⇡(2L+ 1)
Cm,m0,M

l,l0,L C0,0,0
l,l0,L

where :

Gm,m0,M
l,l0,L are Gaunt Coe�cients

Cm,m0,M
l,l0,L are Clebsch�Gordan Coe�cients
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Nature arranges for some important processes to have a simple 
form. 
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= amk,lM
m
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Single top t-channel production & decay 

Single top t-channel 
production & decay Three angles are involved

The triple differential decay rate: 
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More gory details
q ⃗

N⃗
T ⃗

s ⃗t

p ⃗l
�

⇥1
⇥2

q⃗:  W momentum, top rest frame
p⃗l:  lepton momentum, W rest frame
s⃗t: polarization axes (spectator quark)

There are three angle, two polar 

cos ✓1 ⌘ q̂ · ŝt
cos ✓2 ⌘ q̂ · p̂l

tan� =
p̂l ⇥ (q̂ ⇥ (q̂ ⇥ ŝt))

q̂ · (p̂l ⇥ ŝt)

15

Nucl.Phys.B840:349-378,2010



Heavy Higgs decay to two vector bosons:
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And for B physics aficionados, B0
s→J/ψφ
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Obtaining the coefficients:
⇢(✓1, ✓2,�) = amk,lM

m
kl (✓, ✓

⇤,�⇤)Suppose:

amk,l =

Z
⇢(✓1, ✓2,�)M

m⇤
kl (✓1, ✓2,�)d⌦

MFormally:

Consider how to evaluate this integral using  Monte Carlo integration:

* generate data according ρ(θ1,θ2,φ).   
* take the average value of Mklm* for the so-generated dataset. 

Notice:

*  You do not need to know ρ.  
*  All you need for this is the dataset.  Good: that’s all you have anyway.  

And: 

*    You can also obtain errors, correlations, a full covariance matrix!

amkl = hMm⇤
k,l (✓1, ✓2,�)i
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Here is a demonstration using harmonic basis functions  in a 
rectangular space:
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Single top t-channel

θ1 vs. φ                                                   θ2 vs. φ
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Finite number of coefficients describe the  shape in the absence 
of detector effects

Single top t-channel (PROTOS), no detector effects
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H → W+W-

θ1 vs. φ                                                   θ2 vs. φ
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Finite number of coefficients describe the  shape in the absence 
of detector effects

H→W+W- (PYTHIA), no detector effects
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H → W+W- (pythia truth level)

θ1 vs. φ                                                   θ2 vs. φ
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H → W+W- (reconstruction level)

θ1 vs. φ                                                   θ2 vs. φ

25



Single top t-channel (protos truth level)

θ1 vs. φ                                                   θ2 vs. φ
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Single top t-channel (reconstruction level):

θ1 vs. φ                                                   θ2 vs. φ
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But detector effects have a very big impact!

Here in miniature is the original.

Our mission:  recover the original
coefficients from the reconstructed 
coefficients.

….

Single top t-channel, reconstruction level coefficients.
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Detector effects
A particle produced at θ1T, θ2T, φT,

is either rejected by selection cuts,

or it is reconstructed at θ1R, θ2R, φR

 
The joint probability function is defined as

R(✓1T , ✓2T ,�T , ✓1R, ✓2R,�R)

Manufacture a basis for this 6-D space out of M-functions:

rk,l,m,k0,l0,m0Mm
k,l(✓1T , ✓2T ,�T )M

m0

k0,l0(✓1R, ✓2R,�R)

==> obtain the coefficients from Monte Carlo
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Convert first:
You have found the coefficients of the joint pdf.  

You need the coefficients of the conditional pdf R(✓1R, ✓2R,�R|✓1T , ✓2T ,�T , )

R(✓1R, ✓2R,�R, ✓1T , ✓2T ,�T , )

Convert by solving this matrix equation, which is obtained using Gaunt’s theorem:

aµ,� ·Wµ0,µ,M
0,�0,,�,K,L · g0,�0,µ0,K0,L0,M 0 = rK,L,M,K0,L0,M 0

Gaunt coefficients
   Physics 
coefficients
in training

sample

You need You have

You can get what you need by inverting this system of equations

g0,�0,µ0,K0,L0,M 0
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Construct a convolution theorem

Theorem accommodates non isotropic smearing, which need not be independent
of the decay angles:
 

gK,L,�M,k,l,m · aK,L,M = Ak,l,m

Which can be written in a matrix form:

From
 MC

Reco coefficients
measured in data

Physics coefficients. You want.  

G · ~a = ~A

Multiply the physics distribution with the conditional probability and integrate
over the truth angles. . 
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Deconvolve. Conceptually:

From
 MC

Reco coefficients
measured in data

Physics coefficients. You want.  

But given that you G is a rectangular matrix in general, you will have to minimize a
χ2:

G · ~a = ~A

~a = G�1 · ~A

�2(~a) = ( ~A�G · ~a)T ·C�1 · ( ~A�G · ~a)
With analytic solution and error matrix:
 

~a = (GTC�1G)

�1GTC�1 ~A V ⌘ Cov(~a) = (GTC�1G)

�1
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Single top t-channel
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H → W+W- (reconstruction level)
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H → W+W- (after deconvolution)
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Deconvolving the detector from an observed signal in Fourier 
space: the recipe

1. Do an orthogonal series  analysis of the Monte Carlo in the space of true and 
reconstructed angles.

2. Coefficient Conversion:  Joint PDF-> Conditional PDF & determination of G.  
      Procedure is sketched in the previous slides, will be fully described in proceedings. 

3.   Do an orthogonal series  analysis of data sample to determine coefficients A of   
      reconstructed angular distributions and their covariance matrix C. 

4.   Apply this equation:  

~a = (GTC�1G)

�1GTC�1 ~A V ⌘ Cov(~a) = (GTC�1G)

�1

to obtain the physics coefficients & the full covariance thereof. 

Then propagate the measurement  to fundamental parameters: coupling constants in the 
interaction Lagrangian 36



Conclusions

37

❖ We showed a set of techniques for describing data using orthogonal functions.

❖ Introduced a set of functions useful for a certain types of processes with two polar 
and one azimuthal angle.

❖ The techniques benefit from an impressive mathematical toolkit, but one which is 
largely unfamiliar to physicists.

❖ This includes Gaunt’s theorem and a variant of the convolution theorem.

❖ The latter is extremely useful for handling ferocious detector effects and the benefit 
is simultaneous determination of shape variables and/or physics parameters.

❖ The purpose of this talk and the accompanying proceedings is to make these 
techniques more familiar to the physics community. 

❖ Thank you!


