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Heavy H-=W+*W-, lepton + jets

single top t-channel

2. A particle detector

3. The convolution theorem.
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T'he signal

The purpose of the analysis is to measure an angular distribution d™I" / d Q"

The reason for studying the angular distribution is: sensitivity to coupling constants
in the decay, particularly anomalous couplings, which would be a sign of new physics.

g -ichq, The Wtb

RS 2t 2
Lwiy = —EMM(VLPL + VRPRr)IW — ﬁb Mo (9Pr + grPr)IW, + h.c. vertex.
Nucl.PhyS.3840:349-378,2010
2 2 2 The HWW

arXiv:1505.05516

In particular we concentrate on signatures with a single neutrino in the final sate:

* Resolution effects are large.
* But the final state can be fully, if not precisely, reconstructed.
Single top t-channel w/ leptonic decay, vs=14 TeV generated with PROTOS.

https:/ /jaguilar.web.cern.ch /jaguilar/protos /manual.ps

H(200 GeV) ->W+*W-, lepton+jets mode, vs=14 TeV generated with PYTHIAS.
3 Comput. Phys.Commun. 191 (2015) 159



https://jaguilar.web.cern.ch/jaguilar/protos/manual.ps

:muon chamber

:magnetized iron

- hadron calorimeter

* EM calorimeter

: :beam pipe center
‘magnet coil

The detector

tracking chamber

We demonstrate a technique with a
simple detector simulation:

Very simple smearing of the neutrino
energy and direction are applied:

o(Et) = 0.5VEr. in both x, y directions.

Neutrino p, obtained from the W mass
constraint; quadratic ambiguity solved
by optimizing the reconstructed top
(Higgs) mass.

Cuts applied on pr of lepton,
and jets E7ss, lepton isolation, detector
acceptance.

These isolate the lepton + jets signal.



The convolution theorem
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The Fourier transform of the convolution of two

functions is the product of their Fourier transforms.

Used in signal processing. Proof is simple:

(x)g(t — z)dx

[ Fwie

Flw)-

) g

] e—iw’(t) [i/ei(w/w)xdw]
] 2T

] e—iw'(t)é(wl = w)

)e—iw’(t—az)dw/] A

Define convolution

Express in terms of
Fourier transforms

Rearrange
Discern a d-function

Collapse an integral



Formulated more abstractly, we can imagine that convolution theorem
works with any set of basis functions, not just complex exponentials.

(f % 9)(t) = / o

= N (FIR) (kl2) (@ — t|K) (K |g)

x,k,k’

= Y (flk) (Ele) (@lk) (k' ghe™™®
x,k,k’

e Z<f}k>5k’k/<k/‘g>eik’t
k,k’

= > (1K) (klg)e™
k
= / fae™ dk
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Convolution on a sphere

Mathematische Annalen
December 1917, Volume 78, Issue 1, pp 398-404

Uber orthogonal-invariante Integralgleichungen. Origin of the Funk-Hecke

Von theorem.

E. Hecke in Basel.

218 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO.2, FEBRUARY 2003

First practical
Lambertian Reflectance and Linear Subspaces application?

Ronen Basri, Member, IEEE, and David W. Jacobs, Member, IEEE

BASRI AND JACOBS: LAMBERTIAN REFLECTANCE AND LINEAR SUBSPACES

The above paper

addresses the issue of

facial recognition under
different lighting conditions.

Sound familiar?

Fig. 1. The same face, under two different lighting conditions.


http://link.springer.com/journal/208
http://link.springer.com/journal/208/78/1/page/1

Angular analog: the Funk-Hecke theorem

Describes the effect of isotropic

angular smearing on an angular
distribution dI"/dQ).

reconstructed

N

00 [
signal P(ea¢) = S: S: C}nYlm(eagb)

[=0 m=-—I

M
detector R(@) £ Z ri P (COS @)

effects
[=0

M [
(p*R)(O,0) = > > di*Y™(6,9)
[=0 m=—1
2

where d; = i 1770}” (no summation)

The proof of this theorem is not hard either.

But the theorem is not sufficient for our purposes

and we will have to “roll our own”
8



We use an orthogonal function called an #/-Function, a function
ol three angles built from spherical harmonics:

M (61,02, 0) = V2rY"(61,0)Y;" (02, ¢)
= V2rY, (61, 9)Y;™ (62,0)

These functions:

* are orthogonal
* are complete
* obey Gaunt’s theorem.
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Here 1s a visual picture of M-function projections:

Dl O
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The qualifiers (a) and(s) mean
Difficult to display three - that the distribution is
variables in a graph. We

' ' : asymmetric or symmetric in
show 02vs ¢ in these plots. 01
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Properties of M-functions

Orthogonality: /M,?fl(el,ﬁg,qﬁ) "77’:ﬁ(t91,02,qb)dQM — Ok OO e

where  dQ™ = sin 6; sin 05db; dOsdd

Complex conjugation M,??’:;f (01,02, 0) = Ml;{”(el, 02, ®)

Gaunt’s theorem: M,z?l(ﬁl, 65, ¢)M;?/L:p(91, 02, 0) = W;Z’Z'? oI KMI]\{{L(QL 02, 9)

779 J ) Y

LE, if I have to multiply two M-functions, I can write the product as a sum of M-functions.

The known coefficients Wi i1,k ™M can be expressed in terms of Gaunt coefficients and

the Gaunt coefficients in Clebsch-Gordan %f)efﬁcients: gory details in the hidden slide.



Gory details, Gaunt expansion

’ 20 +1)(20' + 1) ' .M ~0,0,0
Gmam 7M ( Cm;m ’ C’ 7/7

are Gaunt Coeflicients
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Nature arranges for some important processes to have a simple
form.

1 dr(ela (927 ¢)
[ dQM

/0(‘917 (927 ¢)

ap My (01,02, 0)

Summation implied, finite series.

1k



Single top t-channel production & decay

Single top t-channel

production & decay Three angles are involved

| Wibr> \
| uvb
|W0bL>/ Sl

| t>

| Wobr> > | uvbp>

| WRbR> /

14

~

The triple differential decay rate:

dr(ela 6)27 ¢)

1
p(917927¢) f dOM

= aql;n;lM]ZLl (617 927 ¢)

Nucl.Phys.B840:349-378,2010

e (|A1 = 1ALy P)

ada =+ f (141,417 - 2140 312 — 2140 312 + 141 4 ?)
o=+ Pﬁ (141,32 = 140,312 + 140 4 1* = 14_, 3 ")
G (|A1 I 1] )

a12—+P2\—ﬁ (141,317 + 2140 312 — 24y 42 - |A_, 4 )
al, =— % (Al VAL AT %A()’_%)

aft=- P% (475403 + 41,345 _3)

al,=— P\/Ll_o (41,345, - A%1_340-4)

ar} = P\/Ll_o (Aj,%AO’% — ALy 3 A%,



More gory details

g: W momentum, top rest frame
pi: lepton momentum, W rest frame
S polarization axes (spectator quark)

There are three angle, two polar

T cosbty =g - 5
cosby = q - Py

Pt X (G X (g X 8))

tan ¢ = S R
q- (P X &)

Nucl.Phys.B840:349-378,2010
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Heavy Higgs decay to two vector bosons:

( ldr(9176’27¢)
’ f . r dQM

¢
o) W+ W~ )
\ (1\27 /2} / :aZ”flM,fg?l(é’l,Qz,qﬁ)

1
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3
a8,1 = a?,o = \/ 397 (|AL\2 &= |AR|2)
1
a8,2 = ag,O T \/W (IfélR‘2 s |14L‘2 - 2|A0|2)
3

0 2 2
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And for B physics aficionados, B’—J/

Ag.0 =
a8,2 =
ag,o o
ag,Q =
a,} e a’l_%* =
a% w a2_§* =
a% e az_,%* =

1
\/?(\Ad A A
1
== (l4of" + 4y * — 2|4 [)
1
\/m (2|A0|2 ' ’14|||2 o |AJ_|2)
1

20127 (2(140]2 + [ALI®) = [A4)1%)

LT s y 5
256 \/ 10 (ALA” & A"AL)

40\f (—AgAY + AgAY)

40\/ 2T

(\A0| — 2|4, 1%)

1!
I dQe

Journal-ref: Eur.Phys.J.C6:647-662,1999



Obtaining the coeflicients:
Suppose: p(é’l, (92, ¢) — GZ?ZMIZL ((9, (9*, ¢*)
Formally: aZfl — /,0((91, (92, ¢)M;ZL* ((91, (92, ¢)dQM

Consider how to evaluate this integral using Monte Carlo integration:

* generate data according 0(01,02,).
“ take the average value of My™ for the so-generated dataset. aZ}’ = <M IZL l* ((9 1,02, ¢)>

Notice:

You do not need to know o.
All you need for this is the dataset. Good: that’s all you have anyway.

And;

*  You can also obtain errors, correlations, a full covariance matrix!
18
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Here is a demonstration using harmonic basis functions in a
rectangular space:

Projection into X Projection into Y

4
g
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-
g
-
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Events/bin

Single top t-channel

* protos
—model
06 0.2 0.2 0.6
cos(0,)

''''''''''

* protos
—model
06 0.2 0.2 0.6
cos(0;)

20
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Finite number of coeflicients describe the shape in the absence
of detector effects

Single top t-channel (PROTOS), no detector effects
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Events/bin

01 vs. ¢

« pythia
— model
0.6 0 0 0.6 1
cos(0;)

Events/bin

« pythia
— model

0, vs. @

Events/bin

« pythia
— model

0.8 1.2 1.6

¢ [Units of x]




Finite number of coeflicients describe the shape in the absence
of detector effects

H—W+W- (PYTHIA), no detector effects
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Events/bin

H — W"W- (pythia truth level

61 VS. qb

« pythia — SWE « pythia - 0 - « pythia E
5 s 2o
0.6 0.2 0.2 0.6 1 -1 0.6 0.2 0.2 0.6 1 0 0.4 0.8 1.2 1.6

cos(0;) ¢ [Units of xt]

24
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H — W"™W- (reconstruction level)

01 vs. ¢
« pythia
_ — model
1
cos(0;)

« pythia
— model

.....

cos(0;)

Zo

0, vs. @

« pythia

— model
0 0.4 0.8

1.6

¢ [Units of x]



Single top t-channel (protos truth level)

''''''''''

* protos * protos

€0000 D000 —mOdel : —mOdel .

0.6 0.2 0.2 0.6 1 -1 0.6 0.2 0.2 0.6 1 0 0.4 0.8 1.2 1.6 2

cos(0y) cos(0;) ¢ [Units of «]
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Single top t-channel (reconstruction level):

cos(0y) cos(0;) ¢ [Units of «]
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But detector effects have a very big impact!

Single top t-channel, reconstruction level coefficients.
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Here in miniature is the original.

Our mission: recover the original —
coefficients from the reconstructed 13 .
coefficients. ST
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Detector eftects

A particle produced at 07, 621, 1,
is either rejected by selection cuts,

or it is reconstructed at O1r, O2r, Pr

The joint probability function is defined as

R (017,021, b7, 01 R, O2R, OR)

Manufacture a basis for this 6-D space out of M-functions:

/
Tk,lm,k 1 ,m' My (011, 0o, o7 ) MY/ 1/ (01R, O2R, OR)

—==> obtain the coefficients from Monte Carlo
29



Convert first:

You have found the coefficients of the joint pdf. R(HlR’ (92R7 ¢R7 91T7 (92T, ¢T, )

You need the coefficients of the conditional pdf R(@ 1R (92 R, ¢ R | v 17T s ‘92T7 ¢T7 )
Convert by solving this matrix equation, which is obtained using Gaunt’s theorem:

w' o, M
W,/\,,“\KL 9k’ N, K', L', M’ = TK,L M,K',L', M’

Phy31cs E % %

coefficients  Gaunt coefficients You need You have
in training
sample

You can get what you need by inverting this system of equations

g/{/a)‘/7ulaK/7L/7M/
30



Construct a convolution theorem

Multiply the physics distribution with the conditional probability and integrate
over the truth angles. .

Theorem accommodates non isotropic smearing, which need not be independent
of the decay angles:

Tt Tt =i b - G 1t e — A o

Which can be written in a matrix form:

—

Gad =4
I T

From Reco coefficients
MC measured in data

Physics coefficients. Ypu want.



Deconvolve. Conceptually:

T o=
e

From Reco coefficients
MC measured in data

—

Physics coefficients. You want. @ = G A

But given that you G is a rectangular matrix in general, you will have to minimize a
X%

@=UA-G-a)7-c' (A-Ga)
With analytic solution and error matrix:

i=(G"C™'G)'G"C'A  V=Cov(@)=(GTCT'G)™!

52
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H — W"™W- (reconstruction level)
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H — W"™W- (after deconvolution)

Akim
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. pythia deconvolved:
— pythia truth

-

T

T W W

L.

:_|||||||||+

Lo
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m=0 m=0 m=0 m=0m=1tIh=11m=0m=1h=11m=0 m=0m=1th=1+1m=0m=tIh=+m=1t2h=12
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Deconvolving the detector from an observed signal in Fourier
space: the recipe

. Do an orthogonal series analysis of the Monte Carlo in the space of true and
reconstructed angles.

. Coefficient Conversion: Joint PDF-> Conditional PDF & determination of G.
Procedure is sketched in the previous slides, will be fully described in proceedings.

. Do an orthogonal series analysis of data sample to determine coefficients A of

reconstructed angular distributions and their covariance matrix C.

. Apply this equation:

e (GTC_lG)_lGTC_lff V = Cov(a) (GTC_lG)_l

to obtain the physics coefficients & the full covariance thereof.

Then propagate the measurement to fundamental parameters: coupling constants in the
interaction Lagrangian 36



Conclusions

+ We showed a set of techniques for describing data using orthogonal functions.

+ Introduced a set of functions useful for a certain types of processes with two polar
and one azimuthal angle.

# The techniques benefit from an impressive mathematical toolkit, but one which is
largely unfamiliar to physicists.

+ This includes Gaunt’s theorem and a variant of the convolution theorem.

» The latter is extremely useful for handling ferocious detector effects and the benefit
is simultaneous determination of shape variables and /or physics parameters.

» The purpose of this talk and the accompanying proceedings is to make these
techniques more familiar to the physics community.

» Thank you!
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