Computational tools for multiloop calculations and their application to the Higgs boson production cross section

Jens Hoff (DESY)

ACAT, Valparaíso
18th of January, 2016
1 TopoID

2 N^3LO Higgs production: qq'-channel
(Small) Introduction

- LHC at 14 TeV \Rightarrow precision measurements
- Extraction of SM parameters \Rightarrow need accurate theory predictions
 (3-loop Higgs production, 4-loop MS-OS relation, (4-loop $g-2$), 4-loop cusp anomalous dimension, 5-loop β-function . . .)
- Usually: Evaluation of Feynman diagrams
 - Feynman rules \rightarrow Feynman diagrams
 \Rightarrow Factorial growth
 - Color-, Lorentz-, Dirac-algebra
 (FORM, FeynCalc, Tracer, HEPMath, . . .)
 - Scalar integrals (tensorial)
 (tensor reduction or projector)
 - Classification in “topologies”/“families”
 \Rightarrow Automated in TopoID, (. . . ?)
 - Reduction to “master integrals”
 \Rightarrow “Manually solve” the IBPs or Laporta’s approach
 (MINCER, MATAD, . . . ; LiteRed; AIR, FIRE, Reduze, . . .)
- Rise in complexity
 - Reduction
 \leftarrow Diagrammatic/“topologic”
 \leftarrow Algebraic
 Systematic “solving” of the IBPs, reconstruction of coefficients from sampling over prime field [von Manteuffel, Schabinger; ’14], improved Laporta, . . . ?
 - (Master integrals \leftarrow new function classes)
(Small) Introduction

Generic topology at NLO:

\[d_1 = m_H^2 + k_1^2 \]

\[d_2 = (p_1 + p_2 + k_1)^2 = -s + 2p_1 \cdot k_1 + 2p_2 \cdot k_1 + k_1^2 \]

\[d_3 = (p_2 + k_1)^2 = 2p_2 \cdot k_1 + k_1^2 \]

\[d_4 = (p_1 + k_1)^2 = 2p_1 \cdot k_1 + k_1^2 \]

Integration-by-parts relations (IBPs):

\[0 = \int d_{k_1}^D \frac{\partial}{\partial k_1^\mu} \{ k_1^\mu, p_1^\mu, p_2^\mu \} \frac{1}{d_1^{a_1} d_2^{a_2} d_3^{a_3} d_4^{a_4}} \]

\[\Rightarrow \text{ Linear relations among integrals from a family} \]

Reduction: express a large set of integrals in terms of few “master integrals”
TopoID
Topology IDentification

Idea: Generic, process independent Mathematica package

- Feynman diagrams \rightarrow reduced result (Laporta not included)

- Topology construction
 (identification, minimal sets; partial fractioning; factorization, ...)

- Handle properties
 (completeness, linear dependence; subtopologies, scalelessness, symmetries;
 graphs, unitarity cuts, ...)

- FORM code generator
 (diagram mapping, topology processing, integral reduction, ...)

- Master integral identification
 (base changes, non-trivial relations, ...)

FORM code generator
(diagram mapping, topology processing, integral reduction, ...)

Master integral identification
(base changes, non-trivial relations, ...)

Bring the polynomial P with m terms into unique form \hat{P} by renaming the n variables $\{x_j\}$:

1. Convert P into $m \times (n + 1)$ matrix $M^{(0)}$
 (row: term, 1st column: coefficient, remaining columns: powers of $\{x_j\}$)
2. Start with considering the above $M^{(0)}$ and the 2nd column ($k = 1$)
3. Compute for all considered matrices $M^{(k),\sigma}$ all transpositions of columns k and $k + 1, \ldots$ (and collect permutations σ)
4. Sort rows in each matrix lexicographically by the first k columns
5. Extract in columns k the lexicographically largest vector
6. Keep only matrices with this maximal vector;
 If $k < n - 1$: $k \rightarrow k + 1$ and goto Step 3
7. Each remaining matrix encodes the same unique \hat{P}_σ and a permutation of variables σ
1. Convert P into $m \times (n + 1)$ matrix $M^{(0)}$
 (row: term, 1st column: coefficient, remaining columns: powers of $\{x_j\}$)

2. Start with considering the above $M^{(0)}$ and the 2nd column ($k = 1$)

$$P = x_1^2 + 2x_1x_2 + x_2^2 + x_3^2 \rightarrow M^{(0)} = \begin{pmatrix}
1 & 2 & 0 & 0 \\
2 & 1 & 1 & 0 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{pmatrix} \quad \text{(Step 1)}$$

$$S^{(1)} = \{ M^{(0)(123)} = M^{(0)} \} , \quad k = 1 \quad \text{(Step 2)}$$
3 Compute for all considered matrices $M^{(k),\sigma}$ all transpositions of columns k and $k + 1, \ldots$ (and collect permutations σ)

\[S'(1) : \quad M'(1)_{(123)} = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}, \quad M'(1)_{(213)} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}, \quad M'(1)_{(321)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 2 & 0 & 1 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix} \]

(Step 3-1)
Sort rows in each matrix lexicographically by the first k columns

$$S''(1) : \quad M''(1)(123) = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}, \quad M''(1)(213) = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix},$$

$$M''(1)(321) = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{pmatrix}$$

(Step 4-1)
5. Extract in columns k the lexicographically largest vector

6. Keep only matrices with this maximal vector;
 If $k < n - 1$: $k \rightarrow k + 1$ and goto Step 3

$$\hat{M}''^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$ \hspace{1cm} \text{(Step 5-1)}$$

$$S^{(2)} = \left\{ M''^{(1)(123)}, M''^{(1)(213)} \right\}, \quad k = 2$$ \hspace{1cm} \text{(Step 6-1)}$$
Compute for all considered matrices $M^{(k),\sigma}$ all transpositions of columns k and $k + 1, \ldots$ (and collect permutations σ)

\[S^{'}(2) : M^{(2)(123)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}, \quad M^{(2)(132)} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}, \]
\[M^{(2)(213)} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}, \quad M^{(2)(231)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \] (Step 3-2)
Sort rows in each matrix lexicographically by the first k columns.

$S''^{(2)} : M''^{(2)(123)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$, $M''^{(2)(132)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$,

$M''^{(2)(213)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$, $M''^{(2)(231)} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$

(Step 4-2)
5. Extract in columns k the lexicographically largest vector.

6. Keep only matrices with this maximal vector;
 If $k < n - 1$: $k \rightarrow k + 1$ and goto Step 3

\[
\hat{M}'''(2) = \begin{pmatrix}
0 \\
2 \\
0 \\
1
\end{pmatrix}
\]
(Step 5-2)

\[
S^{(2)} = \{ M'''(2)^{(123)}, M'''(2)^{(213)} \}
\]
(Step 6-2)
Each remaining matrix encodes the same unique \hat{P}_σ and a permutation of variables σ

$$\hat{P} = P = x_3^2 + x_2^2 + x_1^2 + 2x_1x_2, \quad \hat{\sigma} = \{(123), (213)\}$$ \hspace{1cm} (Step 7)
\[\hat{P} = P = x_3^2 + x_2^2 + x_1^2 + 2x_1x_2, \quad \hat{\sigma} = \{(123), (213)\} \]

(Step 7)

- \(P \) already in canonical form; two permutations \(\{(123), (213)\} \)
- \((213) \) denotes \((x_1, x_2, x_3) \rightarrow (x_2, x_1, x_3) \); symmetry of \(P \) under \(x_1 \leftrightarrow x_2 \)

Application to Feynman integrals

- Use \(U + F \) from the Feynman representation
- Unique identifier \(\hat{U} + \hat{F} \); independent of momentum space representation
- Returned permutations: symmetries of Feynman integrals

⇒ Many useful applications
Minimal set for NNLO Higgs production:

Note: Sufficient for all 2946 diagrams
Non-trivial relation for NNLO Higgs production:

\[
\begin{align*}
\text{Diagram 1} & \quad = \quad \text{Diagram 2} + (\ldots) \quad \times \quad (\ldots) + (\ldots)
\end{align*}
\]

- Cross-topology relations; not from Laporta reduction
- Simplify calculation
- Useful cross-checks
Minimal set for NNLO Higgs production:
TopoID
Topology “merging”

3-loop massless propagators:

\[q_1 = k_1, \quad q_4 = p - k_1 - k_2, \quad q_7 = k_1 + k_2 + k_3, \]
\[q_2 = p - k_1, \quad q_5 = k_3, \quad q_8 = k_1 + k_2, \]
\[q_3 = k_2, \quad q_6 = p - k_1 - k_2 - k_3, \quad q_9 = k_1 + k_3. \]

- 1 external, 3 internal momenta
- \(\Rightarrow \) 9 scalar products
- 3 incomplete topologies with 8 lines
- Identify “greatest common subtopology”
- Find “supertopology” with these 3 different graphs as subtopologies
Partial fractioning for NLO Higgs production:

\[p_2 \rightarrow d_2 d_3 d_4 p_1 \]

Via Gröbner basis:

\[
\begin{align*}
 d_4 & \rightarrow -m_H^2 + s + d_1 + d_2 - d_3 \\
 \frac{d_3}{d_4} & \rightarrow \frac{1}{d_4} \left(-m_H^2 + s + d_1 + d_2 - d_4 \right) \\
 \frac{d_2}{d_3 d_4} & \rightarrow \frac{1}{d_3 d_4} \left(m_H^2 - s - d_1 + d_3 + d_4 \right) \\
 \frac{d_1}{d_2 d_3 d_4} & \rightarrow \frac{1}{d_2 d_3 d_4} \left(m_H^2 - s - d_2 + d_3 + d_4 \right) \\
 \frac{1}{d_1 d_2 d_3 d_4} & \rightarrow \frac{1}{m_H^2 - s} \frac{1}{d_1 d_2 d_3 d_4} (d_1 + d_2 - d_3 - d_4)
\end{align*}
\]
N3LO Higgs production: qq'-channel

Motivation and introduction

- Higgs production at the LHC dominated by gluon fusion
- After [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; '14, '15]: 2.2% corrections, 3% uncertainty at N3LO
 \Rightarrow Cross-check

- Loop-induced process, dominated by top quark mass
- Effective field theory with top quark integrated out:

\[\mathcal{L}_{Y, eff} = -\frac{H}{v} C_1 \mathcal{O}_1 \quad \text{and} \quad \mathcal{O}_1 = \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} \]

- Reduced numbers of scales and loops:
 single dimensionless variable $x = m_H^2/s$ (soft: $x \to 1$)
- Finite matching coefficient C_1 needed to 4-loop

[Chetyrkin, Kniehl, Steinhauser; '98] [Schröder, Steinhauser; '06] [Chetyrkin, Kühn, Sturm; '06]
N^3LO Higgs production: qq'-channel

Status

- **LO calculation (exact)**

 [Ellis et al.; '76] [Wilczek et al.; '77] [Georgi et al.; '78] [Rizzo; '80]

- **NLO (exact)**

 [Dawson; '91] [Djouadi, Spira, Zerwas; '91]

- **NNLO (EFT) \Rightarrow soft expansion to 3rd order valid to $O(1\%)$**

 [Harlander, Kilgore; '02] [Anastasiou, Melnikov; '02] [Ravindran, Smith, van Neerven; '03]

- **NNLO $O(1/M_t^2)$ corrections \approx NNLO $+1\%$**

 [Pak, Rogal, Steinhauser; '09-'11] [Harlander, Mantler, Marzani, Ozeren; '09-'10]

- **N^3LO IR counterterms**

 - 3-loop splitting functions

 [Moch, Vermaseren, Vogt; '02]

 - NNLO master integrals to higher orders in ϵ

 [Pak, Rogal, Steinhauser; '11] [Anastasiou, Bühler, Duhr, Herzog; '12]

 - Cross sections and convolution integrals

 [Höschele, JH, Pak, Steinhauser, Ueda; '12, '13] [Bühler, Lazopoulos; '13]

- **N^3LO scale variation $\Rightarrow O(2\% - 8\%)$**

 [Bühler, Lazopoulos; '13]
\(N^3\text{LO} \) Higgs production: \(qq'\)-channel

Status

- **\(N^3\text{LO} \) corrections**
 - \(VV^2\) and \(V^3\) – 3-loop gluon form factor
 - [Baikov, Chetyrkin, Smirnov\(^2\), Steinhauser; '09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus; '09]
 - \(VRV\) exact in \(x\)
 - [Anastasiou, Duhr, Dulat, Herzog, Mistlberger; '13] [Kilgore; '14]
 - \(V^2R\) exact in \(x\)
 - [Dulat, Mistlberger; '14] [Duhr, Gehrmann, Jaquier; '14]
 - \(VR^2\) expansion in \(x \rightarrow 1\)
 - [Anastasiou, Duhr, Dulat, Furlan, Gehrmann; '14] [Li, von Manteuffel, Schabinger, Zhu; '14], [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; '15]
 - \(R^3\) expansion in \(x \rightarrow 1\)
 - [Anastasiou, Duhr, Dulat, Mistlberger; '13]
 - 37 terms in the \(x \rightarrow 1\) expansion
 - [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; '14, '15]

\(\Rightarrow\) Sufficient for phenomenology

- \(qq'\)-channel exact in \(x\) (\(VR^2\), \(R^3\))
 - [Höschele, JH, Ueda; '14] [Anzai, Hasselhuhn, Höschele, JH, Kilgore, Steinhauser, Ueda; '15]

\(\Rightarrow\) Independent cross-check

- **Many different resummations**
N^3LO Higgs production: qq'-channel

Status

- **N^3LO corrections**
 - **VV^2 and V^3** – 3-loop gluon form factor
 - [Baikov, Chetyrkin, Smirnov^2, Steinhauser; ’09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus; ’09]
 - **VRV exact in x**
 - [Anastasiou, Duhr, Dulat, Herzog, Mistlberger; ’13] [Kilgore; ’14]
 - **V^2R exact in x**
 - [Dulat, Mistlberger; ’14] [Duhr, Gehrmann, Jaquier; ’14]
 - **VRV^2 expansion in x → 1**
 - [Anastasiou, Duhr, Dulat, Furlan, Gehrmann; ’14] [Li, von Manteuffel, Schabinger, Zhu; ’14],
 [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; ’15]
 - **R^3 expansion in x → 1**
 - [Anastasiou, Duhr, Dulat, Mistlberger; ’13]
 - **37 terms in the x → 1 expansion**
 - [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; ’14, ’15]

⇒ **Sufficient for phenomenology**

- **qq'-channel exact in x (VR^2, R^3)**
 - [Höschele, JH, Ueda; ’14] [Anzai, Hasselhuhn, Höschele, JH, Kilgore, Steinhauser, Ueda; ’15]

⇒ **Independent cross-check**

- **Many different resummations**

N^3LO Higgs production: \(qq'-\)channel

Status

- N^3LO corrections
 - \(VV^2\) and \(V^3\) – 3-loop gluon form factor
 - [Baikov, Chetyrkin, Smirnov^2, Steinhauser; '09] [Gehrmann, Glover, Huber, Ikizlerli, Studerus; '09]
 - \(VRV\) exact in \(x\)
 - [Anastasiou, Duhr, Dulat, Herzog, Mistlberger; '13] [Kilgore; '14]
 - \(V^2R\) exact in \(x\)
 - [Dulat, Mistlberger; '14] [Duhr, Gehrmann, Jaquier; '14]
 - \(VR^2\) expansion in \(x \to 1\)
 - [Anastasiou, Duhr, Dulat, Furlan, Gehrmann; '14] [Li, von Manteuffel, Schabinger, Zhu; '14],
 - [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; '15]
 - \(R^3\) expansion in \(x \to 1\)
 - [Anastasiou, Duhr, Dulat, Mistlberger; '13]
 - 37 terms in the \(x \to 1\) expansion
 - [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger; '14, '15]

⇒ Sufficient for phenomenology

- \(qq'-\)channel exact in \(x\) (\(VR^2\), \(R^3\))
 - [Höschele, JH, Ueda; '14] [Anzai, Hasselhuhn, Höschele, JH, Kilgore, Steinhauser, Ueda; '15]

⇒ Independent cross-check

- Many different resummations
\textbf{N}^{3}\text{LO Higgs production: } qq'-\text{channel}

\textbf{Generalities}

1. Reduction of integrals with full x-dependence
 \[\rightarrow \text{Only contributing cuts}\]

2. Construct differential equations for master integrals
 \[\rightarrow \text{Canonical basis (in general: coupled system)}\]

3. Soft limit $x \rightarrow 1$ as boundary condition
 \[\rightarrow \text{Leading term using Mellin-Barnes representation}\]

\textit{Canonical differential equations:}

\[\frac{d}{dx} m_i(x, \epsilon) = \epsilon A_{ij}(x) m_j(x, \epsilon) \quad \text{with} \quad d = 4 - 2 \epsilon\]

[Henn et al.; '13-\ldots]

- ϵ- and x-dependence factorize
- Solve order-by-order in ϵ
- A_{ij}: alphabet of appearing functions

\textbf{E.g. Harmonic Polylogarithms (HPLs):}

\[H_{\vec{w}}(x) = \int_0^x dx' \ f_{w_1}(x') H_{\vec{w}_{n-1}}(x') \quad \text{and} \quad f_{0}(x) = \frac{1}{x}, \ f_{\pm 1}(x) = \frac{1}{1 \mp x}\]
Optical theorem and Cutkosky’s rules

Higher-order corrections:

Virtual More loop integrations

Real Additional final state particles (different phase spaces)

Optical theorem:

\[\sigma(i \rightarrow f) \sim \sum_f \int d\Pi_f \ |M(i \rightarrow f)|^2 \sim \text{Disc } M(i \rightarrow i) \]

Cutkosky’s rules: Consider only valid diagrammatic cuts for Disc

- Two connectivity components
- Separate in- and outgoing momenta (s-channel)
- Contribute to the process (1 or 2 Higgs, 0 to 3 parton lines)
Optical theorem and Cutkosky’s rules

E.g. to NNLO:

$$\int d\Pi_1 \left[\begin{array}{c} \text{Diagram 1} \\ \text{Diagram 2} \\ \text{Diagram 3} \end{array} \right] + \ldots + \left[\begin{array}{c} \text{Diagram 4} \\ \text{Diagram 5} \end{array} \right] + \ldots$$

$$\int d\Pi_2 \left[\begin{array}{c} \text{Diagram 6} \\ \text{Diagram 7} \end{array} \right] + \text{Diagram 8} + \ldots$$

$$\int d\Pi_3 \left[\begin{array}{c} \text{Diagram 9} \\ \text{Diagram 10} \end{array} \right] + \ldots + \text{Diagram 11} + \ldots$$

$$= \left[\begin{array}{c} \text{Diagram 12} \\ \text{Diagram 13} \end{array} \right] + \left[\begin{array}{c} \text{Diagram 14} \\ \text{Diagram 15} \end{array} \right] + \ldots + \left[\begin{array}{c} \text{Diagram 16} \\ \text{Diagram 17} \end{array} \right] + \ldots + \ldots$$
Optical theorem and Cutkosky’s rules

Optical theorem:

\[\sigma(i \rightarrow f) \sim \sum_f \int d\Pi_f |\mathcal{M}(i \rightarrow f)|^2 \sim \text{Disc} \mathcal{M}(i \rightarrow i) \]

Pros

- Forward scattering \(\Rightarrow \) simplified kinematics
- Common treatment of loop and phase space integrals
- Calculation of Disc only for master integrals

Cons

- More loops and diagrams
- Only total cross section (naively)

Approach first used in [Anastasiou, Melnikov; '02]
Optical theorem and Cutkosky’s rules

Handling cut-diagrams:

Filter diagrams

- Fast graph-based algorithm build into Perl script to process QGRAF output
- $N^3\text{LO}$ Higgs: $860\,118 \rightarrow 174\,938$
- NNLO Higgs pair (SV): $17\,667\,600 \rightarrow 42\,252$

Assist reduction

- Build also into TopoID \Rightarrow pass to Laporta reduction
- Typically: only $O(10\%)$ of subtopologies (or relations)
N3LO Higgs production: qq'-channel
Calculation: toolchain

Reduction

1. Generate Feynman diagrams
 QGRAF [Nogueira; '93]

2. Select diagrams with specific cuts
 filter [JH, Pak; (unpublished)]

3. Map diagrams to topologies (← graph information)
 exp [Harlander, Seidensticker, Steinhauser; '98]
 reg [Pak; (unpublished)]

4. Reduction to scalar integrals (← generic topologies)
 FORM [Kuipers, Ueda, Vermaseren, Vollinga; '13]

5. Reduction to master integrals (← basic topologies)
 rows [JH, Pak; (unpublished)]
 FIRE [Smirnov]

6. Minimal basis of master integrals
 TopoID [JH, Pak; (unpublished)]

220 diagrams, e.g.
N^3LO Higgs production: qq'-channel

Calculation: 17 topologies with 3- and 4-particle cuts
N^3LO Higgs production: qq'-channel

Calculation: e.g. “sea snake” topology
N3LO Higgs production: qq'-channel

Results: functions beyond HPLs

- Laporta: 332 master integrals; TopoID: 108 and cancellation of ξ
- Some Feynman integrals generate functions with alphabet beyond HPLs:
 \[\left\{ \frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \frac{1}{1+4x}, \frac{1}{x\sqrt{1+4x}} \right\} \]
- Traced back to common subtopology:

![Diagram](image)

- Numerical implementation in Mathematica:
 - Change alphabet to \(\left\{ \frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \frac{1}{1+4x}, \frac{1}{x\left(\frac{1}{\sqrt{1+4x}} - 1\right)} \right\} \)
 - Use series expansions $x \to 0$ and $x \to 1 \Rightarrow 10$ digits in 1 second
- Note: $x \to (1-x)/x^2 \Rightarrow \text{“Cyclotomic Polylogarithms”}$
 - Representation as “Goncharov Polylogarithms” (linear denominators)
 - Letters of 6th roots of unity; here only:
 \[\left\{ \frac{1}{x}, \frac{1}{1-x}, \frac{1}{(-1)^{3/4} - x} \right\} \]
Conclusion

TopoID:
- Generic, process independent Mathematica package for multiloop calculations; especially for many topologies
- Until now two applications:
 - N^3LO Higgs production and NNLO Higgs pair production
- Works also for 5-loop propagators
- Publication soon . . .

qq'-channel in N^3LO Higgs production:
- New iterated integrals beyond HPLs appear
- Agreement of leading logarithms with
 - [Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger; '15]
- Full calculation underway . . .
NLO and NNLO Higgs pair production

Motivation

Higgs Potential in the Standard Model:

\[V(H) = \frac{1}{2} m_H^2 H^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4, \quad \lambda^{\text{SM}} = \frac{m_H^2}{2v^2} \approx 0.13, \quad v: \text{Higgs vev.} \]

- Verify mechanism of spontaneous symmetry breaking in the SM
- Measure the Higgs self-coupling \(\Rightarrow \) sensitive process

\[\sigma^{\text{LO}}(gg \rightarrow HH)(fb) \]

\[\sqrt{s} \ (\text{GeV}) \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \]

\[200 \quad 600 \quad 1000 \quad 1400 \]

(a) \sim \quad (b) \sim \quad (c) \sim
NLO and NNLO Higgs pair production

Theory status

Prospects for the LHC @ 14 TeV:

- $b\bar{b}\gamma\gamma$-channel, $600 \, fb^{-1}$: $\lambda \neq 0$
 [Baur, Plehn, Rainwater; '04]

- $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^+\tau^-$-channels: “promising”;
 $b\bar{b}W^+W^-$-channel: “not promising”
 [Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira; '13]

- $600 \, fb^{-1}$: $\lambda > 0$; $3000 \, fb^{-1}$: $\lambda^{+30\%}_{-20\%}$ (ratio with Higgs cross section)
 [Goertz, Papaefstathiou, Yang, Zurita; '13]

- And many others, e.g.:
 [Dolan, Englert, Spannowsky; '12] [Papaefstathiou, Yang, Zurita; '13]
 [Barr, Dolan, Englert, Spannowsky; '13] [Barger, Everett, Jackson, Shaughnessy; '14]
 [Englert, Krauss, Spannowsky, Thompson; '15] [...]

- Until now: Higgs pair production not observed in $b\bar{b}b\bar{b}$- and
 $b\bar{b}\gamma\gamma$-channels (as expected in the SM)
 [ATLAS; '15] [CMS; '15]

⇒ Wait for HL-LHC
NLO and NNLO Higgs pair production

Theory status

Known since long:
- LO result with exact M_t dependence
 [Glover, van der Bij; '88] [Plehn, Spira, Zerwas; '98]
- NLO result in $M_t \to \infty$ limit
 \[\sigma_H \approx 20^{\text{LO}} \text{ fb} + 20^{\text{NLO}, M_t \to \infty} \text{ fb} \]
 for \(\sqrt{s_H} = 14 \text{ TeV}, \mu = 2m_H \)

More recently:
- NLO + NNLL ($M_t \to \infty$) \(\approx \) NLO +20%
 [Shao, Li, Li, Wang; '13]
- NNLO w/ or w/o soft-virtual approx. ($M_t \to \infty$) \(\approx \) NLO +20%
 [de Florian, Mazzitelli; '13]
- \(\mathcal{O}(1/M_t^8) \) corrections at NLO \(\approx \) NLO +10%
 [Grigo, JH, Melnikov, Steinhauser; '13]
- NLO real exact in M_t, NLO virt. for $M_t \to \infty$ \(\approx \) NLO −10%
 [Maltoni, Vryonidou, Zaro; '14]
- Cross-check of virtual NNLO corrs.; NNLO matching coefficient for \(ggHH \)-coupling \(\approx \) NNLO +1%
 [Grigo, Melnikov, Steinhauser; '14]
- Improved \(\mathcal{O}(1/M_t^{12}) \) NLO, \(\mathcal{O}(1/M_t^4) \) NNLO soft-virt. corrections
 [Grigo, JH, Steinhauser; 15']
NLO and NNLO Higgs pair production

Generalities

- Operate on full-theory diagrams at NLO and NNLO
- Virt. corrs. in two independent calculations:
 - amplitude (differential; 2-/3-loop)
 - forward scattering (total; 4-/5-loop)
- Real corrs.: only via forward scattering at NLO
- Perform expansion for $M_t \rightarrow \infty$; improve upon effective theory results for NLO [Dawson, Dittmaier, Spira; '98], NNLO [de Florian, Mazzitelli; '13]
- Laporta reduction to master integrals for the “soft” subdiagrams
- Remaining “hard” massive tadpoles via MATAD
- Master integrals as series around $\sqrt{s} = 2m_H$ (not in this talk)
Differential factorization

Factorization of the LO result exact in M_t for:

Total cross section

$$\sigma^{(i)} = \Delta^{(i)} \sigma_{\text{exact}}^{(0)} = \frac{\sigma_{\text{exact}}^{(0)}}{\sigma_{\exp}^{(0)}} \int_{4m_H^2}^{s} dQ^2 \frac{d\sigma_{\exp}^{(i)}}{dQ^2}$$

with $\Delta^{(i)} = \frac{\sigma_{\exp}^{(i)}}{\sigma_{\exp}^{(0)}}$, $\sigma_{\exp}^{(i)} = \sum_{n=0}^{N} c_n^{(i)} \rho^n$, $\rho = \frac{m_H^2}{M_t^2}$

Differential cross section

$$\sigma^{(i)} = \int_{4m_H^2}^{s} dQ^2 \frac{\left(\frac{d\sigma_{\text{exact}}^{(0)}}{dQ^2}\right)}{\left(\frac{d\sigma_{\exp}^{(0)}}{dQ^2}\right)} \frac{d\sigma_{\exp}^{(i)}}{dQ^2}$$

"Cure" the invalidity of the $M_t \rightarrow \infty$ expansion for the large-Q^2 region

- Virt. corrs. via amplitude: access to Q^2-dependence $\sim \delta(s - Q^2)$
- Real corrs. via optical theorem (naively): only total cross section

\Rightarrow Use the soft-virtual approximation [de Florian, Mazzitelli; '12]
Soft-virtual approximation

- Split σ into its contributions (works also for $d\sigma/d Q^2$):

$$\sigma = \sigma^{\text{virt+ren}} + \sigma^{\text{real+split}} = \text{finite}$$

$$= \Sigma_{\text{div}} + \Sigma_{\text{fin}} + \Sigma_{\text{soft}} + \Sigma_{\text{hard}} = \Sigma_{\text{SV}=\text{finite}} + \Sigma_{\text{H}=\text{finite}}$$

- Σ_{div} universal for color-less final state [de Florian, Mazzitelli; '12]

- **Compute $\sigma^{\text{virt+ren}}$ as ρ-expansion**

- Solve $\sigma^{\text{virt+ren}} = \Sigma_{\text{div}} + \Sigma_{\text{fin}}$ for Σ_{fin}

- Σ_{div} and Σ_{soft} (soft coll. counterterms + soft real corrs.)

 \sim exact σ^{LO} (include M_t effects)

$$Q^2 \frac{d\sigma}{dQ^2} = \sigma^{\text{LO}} z G(z) \quad \text{with} \quad z = \frac{Q^2}{s}, \quad G(z) = G_{\text{SV}}(z) + G_{\text{H}}(z)$$

$$\sigma_{(SV)} = \int_{1-\delta}^{1} dz \sigma^{\text{LO}}(zs) G_{(SV)}(z) \quad \text{with} \quad \delta = 1 - \frac{4m_H^2}{s}$$

- $G_{SV}(z)$ constructed from $\sigma_{\text{fin}}^{(i)}$ and σ^{LO} only

 [de Florian, Mazzitelli; '12] [Grigo, JH, Steinhauser; '15]
Asymptotic expansion

- Expand at integrand level for all contributing regions
 \[\equiv \text{series expansion in analytic result} \]
- Hierarchy: \(M_t^2 \gg s, m_H^2 \Rightarrow \text{series in } \rho = m_H^2/M_t^2 \)
- Effectively reduce number of loops and scales

- Here: regions correspond to subgraphs (in general more than one)
- Hard mass expansion: subgraphs must contain all heavy lines

Example: NLO real with one region

\[\begin{align*}
\{ M_t^2, m_H^2, s \} & \quad \rightarrow \quad \{ M_t^2 \} \times \{ m_H^2, s \} \times \{ M_t^2 \}
\end{align*} \]
Asymptotic expansion

- Expand at integrand level for all contributing regions
 ≡ series expansion in analytic result
- Hierarchy: $M_t^2 \gg s, m_H^2 \Rightarrow$ series in $\rho = m_H^2 / M_t^2$
- Effectively reduce number of loops and scales

- Here: regions correspond to subgraphs (in general more than one)
- Hard mass expansion: subgraphs must contain all heavy lines

Example: NLO virt. with two regions

\[
\{ M_t^2, m_H^2, s \} \rightarrow \{ M_t^2 \} \times \{ m_H^2, s \} \times \{ M_t^2 \}
\]

\[
\{ M_t^2 \} \times \{ m_H^2, s \} \times \{ M_t^2 \}
\]
NLO and NNLO Higgs pair production
Calculation (via optical theorem)

LO topology:

Virt. NLO topologies:

Real NLO topologies:
Note:

- Different regions in asymptotic expansion \Rightarrow different loop-orders
- Here: multiplied with 1- to 3-loop massive tadpoles
NLO and NNLO Higgs pair production
Calculation (via optical theorem)

Virt. and real LO-NLO master integrals:

Virt. NNLO master integrals (in addition):
NLO and NNLO Higgs pair production
Splitting in soft-virtual and real contributions at NLO

- Partonic NLO correction; total factorization

Using $\mu = 2m_H$ (also in the following)

- Different behavior for higher orders in ρ expansion:
 - SV increasing
 - H decreasing (flat for $\sqrt{s} \gtrsim 400$ GeV)

\Rightarrow SV numerically dominant
NLO and NNLO Higgs pair production

Total vs. differential factorization (DF) at NLO

- DF applied only to SV part; H treated via total factorization (i.e. identical)

Maxima of DF curves at lower \sqrt{s}; smaller cross sections

⇒ Improvement of convergence:

difference of ρ^0 and corrections to ρ^6 (for $\sqrt{s} = 400$ GeV):

0.25 fb vs. 0.05 fb

- (Partonic K-factor: behavior at top quark pair threshold not washed out)
Technical upper cut on \sqrt{s} (good proxy to Q^2):

$$\sigma_H(s_H, s_{\text{cut}}) = \int_{4m_H^2/s_H}^1 d\tau \left(\frac{d\mathcal{L}_{gg}}{d\tau} \right)(\tau) \sigma(\tau s_H) \theta(s_{\text{cut}} - \tau S_H)$$

$\sqrt{s_{\text{cut}}} \rightarrow \infty$: total cross section for 14 TeV

Spread of ρ-orders $\Rightarrow \pm 10\%$ uncertainty of EFT at NLO due to M_t
Lessons from NLO for NNLO:

- SV approximation contracted for $z \to 1$;
 $G_{SV}(z)$ can be replaced by $f(z) G_{SV}(z)$ with $f(1) = 1$

 Splitting into SV and H not unique

- Tune $f(z)$ at NLO such that $\sigma \approx \Sigma_{SV}$
 $\Rightarrow f(z) = z$ accurate to 2%

- Replace RGE logarithms ($\sqrt{s} \approx Q^2$ in the soft limit):
 $\Rightarrow \log(\mu^2/s) \to \log(\mu^2/Q^2)$

Discrepancy to [Maltoni, Vryonidou, Zaro; '14]:

- Real corrs.: treated exactly; Virt. corrs.: EFT result
- Claim: -10% correction at NLO

But: Dominant positive shift from virtual $1/M_t$-corrections (c.f. backup slide)
NLO and NNLO Higgs pair production

NNLO SV corrections

- EFT result plus ρ- and ρ^2-terms
- Peaks at smaller \sqrt{s}
- Same pattern of ρ-corrections

Conv. up to $\sqrt{s_{\text{cut}}} \approx 400$ GeV
- ρ- and ρ^2-corrections: $\pm 2.5\%$

M_t-uncertainty at NNLO: 5%

(= NNLO corrs. $\approx 20\%$)
NLO and NNLO Higgs pair production

NNLO SV K-factor

- Strong raise close to threshold \iff steeper NNLO correction
- For total cross section: $K_{H}^{\text{NNLO}} \approx 1.7 - 1.8$
Backup: NLO and NNLO Higgs pair production

Partonic NLO K-factor

Note: Behavior around top quark pair threshold not washed out.
Backup: NLO and NNLO Higgs pair production
Splitting into real and virtual corrections at NLO

Note: R and V separately divergent; only finite contributions shown
Backup: NLO and NNLO Higgs pair production

Total vs. differential factorization without hard contributions at NLO
Backup: NLO and NNLO Higgs pair production
Partonic NNLO cross section for different scales choices and \(f(z) \)

Note: \(f(z) = z \) (better proxy) leads to higher values