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Polylogarithms are generalizations of the logarithm function:
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Classical polylogarithms (Leibniz):
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Multiple polylogarithms in one variable:
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Multiple polylogarithms in several variables (Goncharov):
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w = 7, njis called the weight.



Integral representations:
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For the functions Lin(z) and Lin,,....n, (z) we only need the differential 1-forms
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We denote such iterated integrals by

[wrl..-Jwzlen] :/ozwr(x,).../ox’ wz(xZ)/oxz wilx)
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Extending the set of “building blocks":

@ Harmonic polylogarithms: {%, l‘i—xx, %}(Remiddi, Vermaseren 1999)

dx _dx _dx dx}

@ Two-dimensional harmonic polylogarithms: § <%, 2, iy X1

(Gehrmann, Remiddi 2001)

dx
P x—yi

o Hyperlogarithms: {% ‘I =1,.., n}(Poincare, Kummer, Lappo-Danilevsky)

Every multiple polylogarithm Lin, ... n, (21, ..., 2r) can be expressed in terms of
hyperlogarithms. (Goncharov 2001)

Recent applications to Feynman integrals:

Computer programs by Panzer (HyperInt), Maitre (HPL), Vermaseren (in FORM),
Vollinga, Weinzierl (in GiNaC), ...

and recent work by Duhr, Wissbrock, von Manteuffel, Schlotterer, Broedel,
Stieberger,...



Observation:

Many Feynman integrals can be expressed in terms of multiple polylogarithms,

but not all of them.

Counter examples arise in electroweak physics (Bauberger et al 1994), in QCD
and even in N =4 super Yang—MiIIs theory (Caron-Huot, Larsen 2012, Nandan, Paulos,
Spradlin, Volovich 2013).

QOutline:

@ Part 1: MPL - a program for computations with multiple polylogarithms

@ Part 2: The sunrise integral and elliptic polylogarithms



Part 1: MPL - a program for computations with multiple polylogarithms

(based on joint work with F. Brown)



An alternative to hyperlogarithms:
Instead of {

x’xy

s eee ,
X1 Xn Hagigb Xi —

li=1,. 7n} we use the differential forms
Q, = where 1 <a<b<n

Example: For n = 2 variables:

)
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Not every ordering will provide a well-defined (i.e. homotopy invariant) function.
Chen (1977): | = [w1]...|wr] has to satisfy satisfy the integrability condition
m—1
Z[wl\ wi—1ldwilwisa]-wm] + D fwa]|wi-1lwi A wiga - |wm] = 0

i=1 i=1

Our construction uses an explicit “symbol map” algorithm (CB, Brown 2012, CB, Brown
2014) to take care of this.



We obtain a vectorspace V (£2,) of iterated integrals with the following properties

(Brown '05):

@ V() includes the multiple polylogarithms Lin, ....n, (21, ..., 2r).

@ Functional relations turn into algebraic identities (cf. literature on the “symbol”).
@ V (Q4) has an explicit basis.

@ V (Q,) is closed under taking primitives.

@ Limits at 0 and 1 are combinations of these functions with multiple zeta values.

= Explicit integration algorithms based on these functions (CB, Brown 2014)

= Implementation in a Maple program MPL (CB 2015)



MPL can compute integrals of the cubical type:

1
I = / dxn I f
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where £ € V (Qn), q some polynomial, a; e Nand all pj =1 —[[i_, x;, 1 < k <n
Example:

(1= x1)* >3 (1 —x2)* x4 (1 — x3)*

(1 — X1X2) (1 — X2X3)5

With MPLCubicalIntegrate(g,x[3],3) we compute

11424695
/ dxl/ dxz/ dx3g +66002<(3)

An intermediate result can be obtained by MPLCubicallntegrate(g,x[3],2):
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Application to Feynman integrals:

D-dimensional, scalar L-loop integrals in Feynman parameters:

I/— LD/2) i1 uU*(L‘Fl)D/z
OE / [T (T ) 5 ()
H (]_-(/\))VfLD/2
# of edges, v; : integer propagator powers, A : kinematical invariants and masses,
1-—

N :
H=1-3% csscq,. Ny %i

Problem 1: UV and IR divergences
There are methods to expand in terms of finite integrals /; :

oo
> e

j=—2L

(Panzer 2014, v.Manteuffel, Panzer, Schabinger 2015, Binoth, Heinrich 2000)

Problem 2: The Symanzik polynomials ¢/ and F are more complicated than 1 — [T, x;
= By systematic changes of variables, MPL maps the integrals /; to the cubical
type, and computes them.

These changes of variables exist under certain conditions to the polynomials ¢/ and F.



Consider a generic integral

1dP;
Pi

) S polynomial - Iterated integral with "building blocks'
/ dXN.../ dX1
0 0 IT; Pi

Condition: All P; are linear in one of the variables xj
= map to cubical type and integrate

= map back to Feynman parameters

= The integrand depends on new polynomials P/

= Repeat: Find next variable x; in which all P! are linear...

If this iteration goes through, the integral is called linearly reducible.

An algorithm to check this condition was proposed by Brown (2008).

MPL checks this condition and returns possible orders of integration.
If two further technical conditions are satisfied, the integrations can be done with MPL.



Example: Massless two-loop triangle

P2
X3
P1
X4
X2
P3

Feynman integral: | =[]}, Jo 7 dx;i6(H)U3—2 F~2¢ omitting a trivial factor I'(2¢)

U = x1xa + (x1 + xa) (x2 + x3) , F = —PfX2X3 (x1 + xa) — P§X1X3X4 - P§X1X2X4
. . . . p2 p2
Kinematical invariants: é =(1+xs5)(1+x) and é = X5Xe

We consider the momentum space region where x5 > 0, xg > 0.

With Panzer’s (2014) method we expand: | = %I_l +lo+el+ 0O (e?),



Application of MPLPolynomialReduction to U/, F and of MPLCheckOrder

= allowed order of integrations: xi, xa, X3, X2

With MPLFeynmanIntegrate we re-obtain (cf. Chavez, Duhr 2012):

Iy = 1,

b = 5,

wo= s Ceneo ([ 507 - 2 [ s])
o (3] 420 220 2
—3¢(2) +19.



Part 2: The sunrise integral and elliptic polylogarithms

(joint work with L. Adams and S. Weinzierl)



S

m3

We compute the massive sunrise integral

s(D t):/deldez 1
(7272)7 (g + md) (k3 -+ m3) (~ (b — hu — ko )? + m3)

in D =2—2c and D = 4 — 2¢ dimensions:

5(2—2¢, t) SO, 1) +sW(2, t)e + O (?),
S(4—2¢,t) = S, e 2+ 54, t)et + 5O(4, 1) + Oe)

where

t = p*<0,
0 < mMm<m<m3<m+ms.



Feynman parameters
In D = 2 dimensions, the Feynman parametric version of the sunrise integral

w
5(2,t) = -,
ey = [%
=  xydxa A dxz + xadxz A dx1 + x3dxy A dxa,
o = {[xl:xz:x_v,]GIP’z\x;zO,i:l,Z7 3}

involves the second Symanzik polynomial

F = —x1x2x3t + (xlm% + xzmg + X3m§) (x1x2 + X2x3 + x1x3) .

Remark: F fails the criterion of linear reducibility.

= Direct iterated integration is not possible in the variables xj, x2, x3



In D = 2 dimensions:
Equal mass case: Second order differential equation (Broadhurst, Fleischer, Tarasov 1993);

Solutions Groote, Pivovarov 2000, Laporta, Remiddi 2004, Bloch, Vanhove 2013 ...

Arbitrary masses:
Caffo, Czyz, Laporta, Remiddi (1998): Coupled system of four equations of first order
Miiller-Stach, Weinzierl, Zayadeh (2012): One differential equation of second order

(0 5 + 102+ 0) SO, 1) = (1)

po(t), p1(t), p2(t): polynomials in t and the m? ; p3(t) : also involving
In(m?), i=1,2,3.

Standard Ansatz:

p3(t1)

LW () (=1 (t)2(t1) + 2(t) 1 (t1))

SO(2, t) = Cry(t) + Ceypa(t) +/0 dt

11, 12 : solutions of the homogeneous equation; Cy, C; : constants; W (t): Wronski
determinant.



Underlying geometry:
Second Symanzik polynomial:

2 2 2
F = —xy1xox3t + (lel + xam5 + X3m3) (X1X2 + x2x3 + X1X3) .

The variety F = 0 intersects the integration domain at three points
Py=[1:0:0], P,=[0:1:0], P=[0:0:1].

Coosing one of these as origin defines an elliptic curve.

Transform to Weierstrass normal form y2z — x3 — go(t)xz? — g3(t)z3 =

For z = 1 define e1, e, e3 by y2 = 4(x — e1)(x — €2)(x — e3) with e; + &> + e3 = 0.

= Two period integrals of the elliptic curve are

€3 dx 4 €3 dx 4i
w=2 [Tk, e =2 [T = k)
e y Da er Y Da

2

with the complete elliptic integral of the first kind K(x) = fo dt L

(1—t2)(1—x2¢2)’
and modulus k = 4/ :3 e2 k' =vV1—k2 =,/ :i:::



The period integrals v, 1> are solutions of the homogeneous differential equation.

The constants C;, C, are determined from a simple property of i1, 1> and the limit

of S(o)(27 t) at t = 0 (Davydychev, Tausk 1996).

= We obtain $(©)(2, t) as an integral over a combination of complete elliptic

integrals of the first and second type (Adams, C.B., Weinzierl 2013).

Disadvantage: Elliptic integrals are well known in mathematics, but integrals over

elliptic integrals are not. <= No framework for iterated integrals.

Is there an alternative, “closer to” multiple polylogarithms?

Important step by Bloch and Vanhove (2013) for the equal mass case:

New result in terms of an elliptic dilogarithm.



Consider the lattice L = Z + 7Z, 7 € C with Im(7) > 0.

Elliptic functions f with respect to L: f(x) = f(x + X) for A € L.
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Consider the lattice L = Z + 7Z, 7 € C with Im(7) > 0.

Elliptic functions f with respect to L: f(x) = f(x + A) for X € L.

Let 7 = % with 11, ¥ the periods of an elliptic curve E.

= E is isomorphic to a cell of L. =Consider f as a function defined on E.



Change variables to z = €27 ¢ C*
=Ellipticity f(x) = f(x+ A) means f (z) = f(z-qx), gx € 2™ for A € L.
Particularly: g = e2miT

Basic concept: For some function g construct an elliptic function of the type
f(z,9) =X nez8(z-9")

E.g. Brown, Levin 2011 consider elliptic polylogarithms ZnEZ u"Lim (z-q"),

elliptic multiple polylogarithms and a framework of iterated integrals

(Also see previous definitions in Bloch 1977, Beilinson, Levin 1994, Levin 1997, Levin,
Racinet 2007, ...)



Adams, C.B., Weinzier| 2014: Generalizing Lin(x) = > :°; j‘—" we define

H e o]
BLinm(xyia) = 305 5 7 To @ =3 yFLin(a*x),
k=1

jlkl

En;m(x; y; q) =

% (%Liz(x) — %Liz(x_l) + ELiz; o(x; y; q) — ELi2;o(x7 1 y™1 q)) , n+ meven,
%Lig(X) + %Lig(xfl) + ELi2 o(x; y; q) + ELi2 o(x~%; y~1; q) , n+ m odd.

With this function, we obtain

w1

5@ (2, ¢) : —1; —q) where g = e” ¥2.

The arguments wy, wa, ws are obtained from the intersection points Py, P>, P3 by

above transformations of the elliptic curve.

= Every term in the result can be related to the underlying geometry.



Higher coefficients and D = 4 dimensions:
Tarasov's method (1996, 1997) relates coefficients of

52-2¢t) = SO t)+5MQ, t)e+0 (),
S(4—2c,t) = S, )2+ 504, £)et + 5O(4, 1) + Oe)

@ We consider differential equations for the higher coefficients of 5(2 — 2, t).

@ We solve the system explicitely to obtain S((2, t).
=This implies an explicit result for 5(0)(4, t).(Adams, C.B., Weinzierl 2015, a)

@ For the case m; = my = m3 we provide a method to compute all coefficients

of §(2 — 2¢, t).
This proves, that all of these terms belong to a certain class of elliptic
generalizations of polylogarithms. (Adams, C.B., Weinzierl 2015, b)



As a further extension of

ELinm(x: i q) = ZZJ et

Jj=1 k=

we define
ELinl,H.,n,;m,_,4.4,m,;201,.4.,20,_1 (X17 e XY, s Y0 q)
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For the case of my = my = m3 and D = 2 all e-coefficients s in

S2-2¢1t) =S 502, r)é

e

|l
o



Conclusions:

@ For Feynman integrals which can be computed with the help of multiple

polylogarithms, powerful methods and programs are available today.

@ The Maple program MPL is based on iterated integrals representing the
multiple polylogarithms.

It supports the computation of a certain class of Feynman integrals.
@ For some Feynman integrals we have to go beyond multiple polylogarithms.

@ Here the computation of the massive sunrise integral suggests a class of

elliptic generalizations of polylogarithms.

@ A further investigation of these functions and their relation with elliptic
iterated integrals (Brown, Levin 2010, Broedel, Mafra, Matthes, Schlotterer
2014) will be interesting.



Differential equations

The sunrise integral S(D, t) satisfies an inhomogeneous fourth-order differential
equation (Caffo, Czyz, Laporta, Remiddi 1998) in t:

(Pd—4+Pd—3+Pd—2+ d +P)S(D t)=ciaTia +c13Tiz + Co3 T
4dt4 3dt3 Zdtz dl 0 ) — C12 112 13 1'13 23 123

where Tj; are products of two tadpole integrals of propagators with masses m; and m;

and where all P, and c; are polynomials in m?, m3, m3, t, D.

Each of the e-coefficients $(0)(2, t), S(1)(2, t), S(0)(4, t) satisfies an inhomogeneous

differential equation of second or higher order.

Remark: None of these differential operators factorizes completely into first order
operators. If this would be the case, we could solve simply by iterated integration.






