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The third order perturbative QCD static potential

The static potential in QCD is introduced with using Wilson
loop as a potential of interaction between static quark and
antiquark at a distance r:
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where as = g2 /4, g is the strong coupling constant of the QCD
Lagrangian in MS scheme, p is the renormalization parameter of
dimensional regularization, C is a rectangular loop with time
extent T and spatial extent r, 7% is the generator of SU(N,)
group, Aj is the gluon field, P is the ordering operator along the
way.



The third order perturbative QCD static potential

In momentum space the QCD static potential can be written
into the following form
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Here and below it will be used standard notations for colour
structures of SU(N,) group: [T%, T?| = i fabeTe,
facd fbed — ¢, 590, (T*T*);; = Créyj, Ca and CF are the
Casimir operators, C4 = N, Cp = (N2 — 1)/2N, .

The additional term 87%C% L appears due to the infrared (IR)
divergences, which begin to manifest themselves in the the static
potential at the three-loop level. We will neglect it in our
RG-based analysis.




Colour structures of SU(N,..) group

N4 is the number of the generators of the Lie algebra of the
SU(N.) group, nj=njs — 1, ny is the number of quark flavours,
ded = Tr(T*TOTeT) /6 and Pt = Tr(C*CCCCD) /6 are
the total symmetric tensors, (C%)p. = —if®°, where C are the
generators of the adjoint representation of the Lie algebra of the
SU(N,) group and
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High order PT QCD corrections to the static potential

The coeflicients aMS are calculated from the concrete Feynman

diagrams and equal respectively
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(W. Fischler, 1977; A. Billoire, 1980)
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High order PT QCD corrections to the static potential

The three-loop constant perturbative contribution to the static
potential in the MS-scheme can be presented as
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where the error of numerical calculation of the Cf‘TF—coefﬁcient
is not indicated (A. Smirnov, V. Smirnov, M. Steinhauser,
2008) .



High order PT QCD corrections to the static potential

The numerical expressions of the n;-independent contributions
were obtained by A. Smirnov, V. Smirnov and M. Steinhauser in

2010 and read
. dabcddabcd
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These results should be compared with the independent
calculation of C. Anzai, Y. Kiyo and Y. Sumino in 2010

(0) daF{)cd dabcd

= 502.22(12)C% — 136. 8(14)TA
which have greater inaccuracies. Recent the more accurate result
was obtained by Y. Sumino (private communication 2015):
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Intereswting topic- progrms FIESTA and the one used
by Y. Sumino NOT YET compared in'detail



Subtracted potential

Naturally in addition to the perturbative contributions to the
heavy quark potential there are non-perturbative long-distance
modifications. They create a relative suppression of the potential
of the type A(QQCD /@%. Such confining part of V corresponds to a
linear confining term to the potential in coordinate space
Aqcpr. One can eliminate it by restricting the Fourier transform
to | ¢'|> ps for some factorisation scale. Perturbativity hence
requires py > Aqcop. The subtraction should affect the potential
only at distances larger than the physical scale of the process
described by the potential. Then py < 1/r ~ mguv, where v is
the small relative velocity of two quarks in their centre of mass
(ug = 2 GeV for bottom and 20 GeV for top quark ). The
subtracted potential V(r, j¢) is defined as

V(r, pg) = V(r) + 20mg(py) ,



Subtracted potential

where residual mass dmg(py) is determined
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|q1<py

Cras (1+%
T 47

— (6 + Bo(2 + (2 /1) + ... )

As a consequence the input parameter for threshold calculations
in terms of the subtracted potential is not pole mass M but

mps, (py) = My — dmg(py) , M. Beneke 1998

where mpg, (1f) is the potential subtracted quark mass and it
does not involve large loop perturbative corrections, M, is the
pole mass.



Subtracted potential

Introducing pole mass through running mass, namely:
4
My =mg(ma)(1+ ) Lial(m2))
i=1

and substituting this result into the definition of mpg, (1), one
can see that the dependence on the factorisation scale pf cancels
in this process. Hence one can find subtracted quark mass:
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Pole quark mass

It is known that the total quark bare propagator has following
form

Here f](k:) denotes a single-particle irreducible self-energy
operator of a quark and mg 4 is a bare quark mass. In
consequence of relativistic invariance is performed equality

S (k) = mogB1(E?) + (k — moq)Da(k?)

Connection of the bare mass mg , with pole M, is written in a
standard way through the renormalization mass constant in the
OS-scheme

OS
m07q = Zm Mq.



Pole and running quark mass

The subtraction OS-scheme demands that the heavy quark
propagator has a pole on the mass shell. Hence

798 =mo /My =1+ S1(MZ, o5 (4?)).
A similar expression can be written in the MS-scheme also:

Renormalization mass factor an\ffs is computed by perturbation
theory and can be represented as a series in powers of the
coupling constant, consisting from ultraviolet divergences in the
parameter e:
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where n; is a number of light quark flavours and (..."~!) is the
maximal degree of n;, on which depends the function z;;.



The ratio z,(u?) between the running heavy quark mass
in MS scheme and the pole mass at O(a?) level

Consequently the ratio of the running quark mass in MS scheme
to the pole mass of heavy quark will be expressed as

Zm<u2>:mj\f) - 7§_—1+Z o (7)

Due to the fact that the masses m,(u?) and M, are renormalized
finite quantities, hence the quantity z,,(x?) must be finite also,
and zf,? in particular. Moreover the coefficients of expansion zf,?
can be represented as polynomials (i — 1)-power of n;:

(4)

where all terms before zp,” are computed analytically.



The ratio z,(u?) between the running heavy quark mass
in MS scheme and the pole mass at O(a?) level

For case of SU.(3) group one can obtain at fixed
renormalization parameter MZ:MqQ:
2
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The ratio z,(u?) between the running heavy quark mass
in MS scheme and the pole mass at O(a?) level
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where were used the following values Crp = 4/3, C4 = 3 and

o o0
notations ¢, = Y. k™™ and Li,(x) = > x*k™ .
k=1 k=1



The ratio z,(u?) between the running heavy quark mass
in MS scheme and the pole mass at O(a?) level

(4)

It should separately write out the cubic in n; term zp,”:

L(4)

" = zfﬁfo) + z(41)nl + 27(732)7112 + z(%)n}3 .

m m

As it has been already mentioned in this expression the last two
terms are known in analytical form and computed by R. Lee, P.
Marquard, A. V. Smirnov, V. A. Smirnov and M. Steinhauser
(2013), and the first two terms are not been yet calculated
analytically, but expressions of these coefficients have recently
been obtained in the work Y. Kiyo, G. Mishima and Y. Sumino
(2015) with the help of fitting procedure (NO ERROR BARS
were given!). Let us find the numerical estimates for these two
factors by the MATHEMATICAL method - the method of least

squares.



The estimation of coefficients for n; flavour dependence
and constant term by the least squares method

Using recently calculated results by P. Marquard, A. V.
Smirnov, V. A. Smirnov and M. Steinhauser (2015) for
coefficient 27(73) at fixed n;, performed due to consideration of
mps(ir), om(py) and special algorithms such as the Laporta

algorithm, Fiesta program:

2D (M2) = —1744.8 £ 21.5, 2(D(M?2) = —1267.0 & 21.5,
nl:3 nl:4
2D (M2) = —859.96 & 21.5
nl:5

The uncertainty ¢=21.5 may be related to the computation of
the four-loop diagrams without insertion of fermion loops into
gluon propagators. Indeed the inaccuracies ¢ do not depend on
ny, and this error is almost entirely defined by the constant term
zﬁéo), while the errors of z,(qiu) are negligible (this our
conclusions not yes confirmed by the MSSS-team)



The estimation of coefficients for n; flavour dependence
and constant term by the least squares method

We use the formulas given above to find the expressions of the

first two coefficients z{r° )(M2) and 24" )(Mq2). In this case we
get the following overdetermined system of linear equations:

2440 4 3,40 = _1371.77,
240 44, = _614.68,
240 45240 = 14232,

To solve this system we use the method of least squares. For
this we introduce the function which equal to the sum of
squared deviations A;, = z,(é‘o) 7(73 )nlk — Y1, » where index k

denotes a number of equation, and y;, is a right part of

equations of the system ie. y, = z,(é‘,z — z,(f)n?k zgﬁd)nlk

Bz (40) (41 ZA2 Z 40) +Z,(f1n)nzk _ylk)Q
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The estimation of coefficients for n; flavour dependence
and constant term by the least squares method

Within LSM the solutions of this linear system z(40) zfél) are
finding the minimums of the function @(z,gi‘o) z,(é‘l)), namely :
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T(he)se conditions allow us to find numerical values of z;, ' and
41
Zm

20 (M?) = —3642.9, 2D (M?) = 757.05.
Note, that they agree in reasonable agreement with the values

20 (M%) = —3551.5, 24D (M?) = 745.42

obtained by Kiyo, Mishima, Sumino (2015) using fitting
procedure.



Evaluation of the inaccuracies of the results obtained

The uncertainty of least squares method can be found with
using known error of o = Ay;, = Ay, = 21.5 for each k=1, 2, 3:
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200(M2) = —3642.9 £ 62.0, 2V (M2) = 757.05 £ 15.20.

The fitted results of Kiyo, Mishimo, Sumino have error bars
0 = +21.5.



Conclusion

Finally we obtain the following results

My ~ Mg (M7)(1 + 1.33333a,(M7) + (—1.0414n; + 16.110)aZ (M7)+
+(0.6527nf — 29.701n; + 239.30)a2 (M7)+

+(—0.6781n} + 46.310n] — (864.25 & 15.2)n; + 4457.7 £ 62.0)a3 (M)

My ~mmg(m;) (1 + 1.33333a, (M) + (—1.0414n; + 13.443)a’ (M) +
+(0.6527n7 — 26.655n; + 190.59)a (M )+

+(—0.6781n} + 43.396n; — (745.83 £ 15.2)n; + 3556.4 + 62.0)as (M.))

The last formula should be compared with expression recently
estimated by the fitting method (Y. Kiyo, G. Mishima and Y.
Sumino in 2015) (with our understanding of errors)

My ~mg(my) (1 + 1.33333a5 (M) + (—1.0414n; + 13.443)a’ (M;)+
+(0.6527n; — 26.655n; + 190.59)a’ (M )+
+(—0.6781n} + 43.396n] — 745.85n; + 3556.5 + 21.5)a;(Mm,)) .



Conclusion

n expression for 7, mass normalized on UQ

3 [mo(M2) % M,(1 - 1.3333a5(M?) - 11.207a2(M?) - 123.81a3(M?) + ( 1744.7 £76.9)a(M?))

4 [my(ME) ~ My(1 - 1.3333a5(M7) — 10.16602 (M7) — 1014503 (M) + (—1267.0 £ 86.8)a ﬁ(MZ)

5| (M7~ My(1-1.3333a5 (M) — 912502 (M?) — 80.40a3 (M?) + (~859.9 + 98.0)a’ (M)
expression for 7, mass normalized on

3] m(m ) M,(1- 13333a5(_2) 8.5410% (—?) 91.36a (—2) (~1325.8 + 76.9)a’ (7))

4 my(my) ~ My(1 - 1.33330,(m;) - 75000 (mb) 72,0503 (M7 + (~932.4 £ 86.8)a; (7))
mt(mf)th(l—l,%Biias( 2) — 6.459a2(m?) — 54.04a (m?) + (~603.9 £ 98.0)a’(m?))

[y

expression for 1, mass in terms of the m,()17)

3| M ~m (M )(1+13333a5(n1?)+12985a(M?)+15607a (M) + (2263.4 4 76.9)a2(M?))

4| My~ iy ME)(1+1.333305 (M) + 11944 (M7) + 130.93a3 (MP) + (1698.2 £ 86.8)a2(M?))

5| My~ my(MZ)(1+1.333305(M?) + 10.90302 (M?) + 107.11a3 (M7) + (1209.4 + 98.0)a (M?))
expression for 1/, mass in terms of the 7, (1, 3)

31 Mo~mm(m)(1+1. 3333(15(_2) +10.318¢3(m2) + 116.49] (—2) + (1691.1 £ 76.9)a (7))

4 My~my(ms)(1+1.3333as(m7) +9.277a2 (m )+9441a( ) +(1224.0 £ 86.8)al(m7))

5 My~my(m?)(1+1.333305(7) +8.236a2(m7) + 73.63a3(m3) + (827.3 £ 98.0)a’ (W?))




Conclusion

Sign-constant and significantly growing coefficients of the
corresponding PT series clearly demonstrate their general
asymptotic structure. Now we present the specific values for
various masses of heavy quarks. For this objective we use
following average values of running masses from PDG for the
initial data: m.(m?2)=1.275 GeV, my(m;)=4.180 GeV,
my(m?)=163.643 GeV for charm, bottom and top quark masses
respectively. In order to compute value as(m, ) at N3LO order
for ¢, b and ¢t quarks we use the energy dependence of as up to
O(a?) level, defined through logarithmic terms

= In(m2(m7)/ A(Miém) with parameters A(Miép, which depend
on number of active flavours and order of approximations. For
b-quark we take the average world value of

(ny=5)  _
A o = 215MeV.



Conclusion

The values of Al(\/IS NZLO and Al(\:;é £2LO are obtained at the

N3LO using appropriate matching transformation conditions.
The computed by us results are:

(ny=4) _ N3LO (-—2y _
AWS, Lo = 29TMeV, g (mz) = 0.1271,
(ny=5) _ N5LO
A o = 215MeV, (T2) = 0.0723,
A= g1Mev,  aNLO(m2) = 0.0346.

MS, N3LO



Conclusion

Our final result read:

Me ~ 1.27540.216 + 0.213 4+ 0.305 + 0.563 + 0.026 ,
1GeV

My ~ 4.180 + 0.403 + 0.202 + 0.149 + 0.140 4+ 0.010 ,
1GeV
1(];{;\/ ~ 163.643 4+ 7.549 + 1.613 4+ 0.499 + 0.194 £ 0.023 .

M, =~ (5.074£0.010) GeV,
M; (173.498 £ 0.023) GeV .

Q



Summary

m Estimates of pole heavy quark mass through running mass,
normalized on the running mass, calculated by the least
squares method are in agreement with estimates, performed
by the fitting method

m The uncertainties were evaluated and there was shown that

it does not exceed 2 % from coefficients 27(30) and 27(31)

m There were obtained values of pole heavy quark masses
m [t is very important to get analytical expressions for z,(é‘o)
and 27(731) (this project: already started- R.N. Lee and K.T.

Mingulov, arXiV:1507.04256)



Thank you for your attention!



