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The third order perturbative QCD static potential

The static potential in QCD is introduced with using Wilson
loop as a potential of interaction between static quark and
antiquark at a distance r:

VQCD(µ
2, r2, αs(µ

2)) = − lim
T→∞

1

iT
ln

〈0 | Tr Pe
ig

∮

C

dxµAa
µT

a

| 0〉
〈0 | Tr 1 | 0〉 =

=

∫

d3~q

(2π)3
ei~q~rV(~q 2, µ2, αs(~q

2)) ,

where αs = g2/4π, g is the strong coupling constant of the QCD
Lagrangian in MS scheme, µ is the renormalization parameter of
dimensional regularization, C is a rectangular loop with time
extent T and spatial extent r, T a is the generator of SU(Nc)
group, Aa

µ is the gluon field, P is the ordering operator along the
way.



The third order perturbative QCD static potential

In momentum space the QCD static potential can be written
into the following form

V(~q 2, µ2, αs(~q
2)) =

−4πCFαs(~q
2)

~q 2

(

1 + aMS
1

αs(~q
2)

4π
+

+aMS
2

(

αs(~q
2)

4π

)2

+

(

aMS
3 + 8π2C3

A ln
µ2

~q 2

)(

αs(~q
2)

4π

)3

+ . . .

)

.

Here and below it will be used standard notations for colour
structures of SU(Nc) group: [T a, T b] = ifabcT c,
facdf bcd = CAδ

ab, (T aT a)ij = CF δij , CA and CF are the
Casimir operators, CA = Nc, CF = (N2

c − 1)/2Nc .
The additional term 8π2C3

AL appears due to the infrared (IR)
divergences, which begin to manifest themselves in the the static
potential at the three-loop level. We will neglect it in our
RG-based analysis.



Colour structures of SU(Nc) group

NA is the number of the generators of the Lie algebra of the
SU(Nc) group, nl=nf − 1, nf is the number of quark flavours,
dabcdF = Tr(T aT (bT cT d))/6 and dabcdA = Tr(CaC(bCcCd))/6 are
the total symmetric tensors, (Ca)bc = −ifabc, where Ca are the
generators of the adjoint representation of the Lie algebra of the
SU(Nc) group and

NA = N2
c − 1 ,

dabcdA dabcdA

NA
=

N2
c (N

2
c + 36)

24
,

dabcdF dabcdA

NA
=

Nc(N
2
c + 6)

48
,
dabcdF dabcdF

NA
=

N4
c − 6N2

c + 18

96N2
c

.



High order PT QCD corrections to the static potential

The coefficients aMS
i are calculated from the concrete Feynman

diagrams and equal respectively

aMS
1 =

31

9
CA − 20

9
TFnl ,

(W. Fischler, 1977; A. Billoire, 1980)

aMS
2 =

(

4343

162
+ 4π2 − π4

4
+

22

3
ζ(3)

)

C2
A −

(

1798

81
+

56

3
ζ(3)

)

CATFnl

−
(

55

3
− 16ζ(3)

)

CFTFnl +

(

20

9
TFnl

)2

,

(M. Peter, 1997; Y. Schroder, 1999)



High order PT QCD corrections to the static potential

The three-loop constant perturbative contribution to the static
potential in the MS-scheme can be presented as

aMS
3 = a

(3)
3 n3

l + a
(2)
3 n2

l + a
(1)
3 nl + a

(0)
3 .

a
(3)
3 = −8000

729
T 3
F ,

a
(2)
3 =

(

12541

243
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3
ζ(3) +

64π4

135

)

CAT
2
F +

(

14002
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3
ζ(3)

)

CFT
2
F

a
(1)
3 = −709.717C2

ATF +

(

− 71281
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+ 264ζ(3) + 80ζ(5)

)

CACFTF

+

(

286

9
+

296

3
ζ(3)− 160ζ(5)
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C2
FTF − 56.83(1)

dabcdF dabcdF

NA

where the error of numerical calculation of the C2
ATF -coefficient

is not indicated (A. Smirnov, V. Smirnov, M. Steinhauser,
2008) .



High order PT QCD corrections to the static potential

The numerical expressions of the nl-independent contributions
were obtained by A. Smirnov, V. Smirnov and M. Steinhauser in
2010 and read

a
(0)
3 = 502.24(1)C3

A − 136.39(12)
dabcdF dabcdA

NA

These results should be compared with the independent
calculation of C. Anzai, Y. Kiyo and Y. Sumino in 2010

a
(0)
3 = 502.22(12)C3

A − 136.8(14)
dabcdF dabcdA

NA

which have greater inaccuracies. Recent the more accurate result
was obtained by Y. Sumino (private communication 2015):

a
(0)
3 = 502.22(12)C3

A − 136.6(2)
dabcdF dabcdA

NA

Intereswting topic- progrms FIESTA and the one used
by Y. Sumino NOT YET compared in detail



Subtracted potential

Naturally in addition to the perturbative contributions to the
heavy quark potential there are non-perturbative long-distance
modifications. They create a relative suppression of the potential
of the type Λ2

QCD/~q
2. Such confining part of V corresponds to a

linear confining term to the potential in coordinate space
ΛQCDr. One can eliminate it by restricting the Fourier transform
to | ~q |> µf for some factorisation scale. Perturbativity hence
requires µf > ΛQCD. The subtraction should affect the potential
only at distances larger than the physical scale of the process
described by the potential. Then µf < 1/r ∼ mqv, where v is
the small relative velocity of two quarks in their centre of mass
(µf ≈ 2 GeV for bottom and 20 GeV for top quark ). The
subtracted potential V(r, µf ) is defined as

V(r, µf ) = V(r) + 2δmq(µf ) ,



Subtracted potential

where residual mass δmq(µf ) is determined

δmq(µf ) = −1

2

∫

|~q|<µf

d3~q

(2π)3
V(~q 2) =

= µf
CFαs

π

(

1 +
αs

4π
(aMS

1 + β0(2 + ln(µ2/µ2
f )) + . . .

)

As a consequence the input parameter for threshold calculations
in terms of the subtracted potential is not pole mass M but

mPSq(µf ) = Mq − δmq(µf ) , M. Beneke 1998

where mPSq (µf ) is the potential subtracted quark mass and it
does not involve large loop perturbative corrections, Mq is the
pole mass.



Subtracted potential

Introducing pole mass through running mass, namely:

Mq = mq(m
2
q)(1 +

4
∑

i=1

lia
i
s(m

2
q))

and substituting this result into the definition of mPSq (µf ), one
can see that the dependence on the factorisation scale µf cancels
in this process. Hence one can find subtracted quark mass:

mPSq(µf ) = mq(m
2
q)

(

1 +
4αs(m

2
q)

3π

(

1− µf

mq(m2
q)

)

+

+

(

αs(m
2
q)

π

)2

(13.44 − 1.04nf−

− µf

3mq(m2
q)

(

aMS
1 − β0

(

ln
µ2
f

m2
q(m

2
q)

− 2

)))

+ ...

)



Pole quark mass

It is known that the total quark bare propagator has following
form

iĜ(k) =
i

k̂ −m0,q + Σ̂(k)

Here Σ̂(k) denotes a single-particle irreducible self-energy
operator of a quark and m0,q is a bare quark mass. In
consequence of relativistic invariance is performed equality

Σ(k̂) = m0,qΣ1(k
2) + (k̂ −m0,q)Σ2(k

2)

Connection of the bare mass m0,q with pole Mq is written in a
standard way through the renormalization mass constant in the
OS-scheme

m0,q = ZOS
m Mq.



Pole and running quark mass

The subtraction OS-scheme demands that the heavy quark
propagator has a pole on the mass shell. Hence

ZOS
m = m0/Mq = 1 + Σ1(M

2
q , αs(µ

2)).

A similar expression can be written in the MS-scheme also:

m0,q = ZMS
m mq(µ

2).

Renormalization mass factor ZMS
m is computed by perturbation

theory and can be represented as a series in powers of the
coupling constant, consisting from ultraviolet divergences in the
parameter ε:

ZMS
m (αs(µ

2)) = 1 +

∞
∑

i=1

i
∑

j=1

zij(n
i−1
l )

εj

(

αs(µ
2)

π

)i

where nl is a number of light quark flavours and (...i−1) is the
maximal degree of nl, on which depends the function zij .



The ratio zm(µ
2) between the running heavy quark mass

in MS scheme and the pole mass at O(α4
s) level

Consequently the ratio of the running quark mass in MS scheme
to the pole mass of heavy quark will be expressed as

zm(µ2) =
mq(µ

2)

Mq
=

ZOS
m

ZMS
m

= 1 +

∞
∑

i=1

z(i)m

(

αs(µ
2)

π

)i

Due to the fact that the masses mq(µ
2) and Mq are renormalized

finite quantities, hence the quantity zm(µ2) must be finite also,

and z
(i)
m in particular. Moreover the coefficients of expansion z

(i)
m

can be represented as polynomials (i− 1)-power of nl:

z(i)m =
i−1
∑

j=0

z(i, j)m nj
l ,

where all terms before z
(4)
m are computed analytically.



The ratio zm(µ
2) between the running heavy quark mass

in MS scheme and the pole mass at O(α4
s) level

For case of SUc(3) group one can obtain at fixed
renormalization parameter µ2=M2

q :

z(10)m = −4

3
, z(20)m = −3019

288
+

ζ3
6

− π2 ln 2

9
− π2

3
, z(21)m =

71

144
+

π2

18
,

z(30)m = −9478333

93312
− 61ζ3

27
− 644201π2

38880
+

587π2 ln 2

162
+

22π2 ln2 2

81
+

+
1439π2ζ3

432
− 1975ζ5

216
+

695π4

7776
+

55 ln4 2

162
+

220

27
Li4

(

1

2

)

,

z(31)m =
246643

23328
+

241ζ3
72

+
967π2

648
+

11π2 ln 2

81
− 2π2 ln2 2

81
− 61π4

1944
−

− ln4 2

81
− 8

27
Li4

(

1

2

)

,

z(32)m = − 2353

23328
− 7ζ3

54
− 13π2

324
,



The ratio zm(µ
2) between the running heavy quark mass

in MS scheme and the pole mass at O(α4
s) level

z(43)m =
42979

1119744
+

317ζ3
2592

+
89π2

3888
+

71π4

25920
,

z(42)m = −32420681

4478976
− 40531ζ3

5184
− 63059π2

31104
− 103π2 ln 2

972
+

+
11π2 ln2 2

243
− 2π2 ln3 2

243
− 5π2ζ3

48
+

241ζ5
216

− 30853π4

466560
−

−31π4 ln 2

9720
+

11 ln4 2

486
− ln5 2

405
+

44

81
Li4

(

1

2

)

+
8

27
Li5

(

1

2

)

,

where were used the following values CF = 4/3, CA = 3 and

notations ζn =
∞
∑

k=1

k−n and Lin(x) =
∞
∑

k=1

xkk−n .



The ratio zm(µ
2) between the running heavy quark mass

in MS scheme and the pole mass at O(α4
s) level

It should separately write out the cubic in nl term z
(4)
m :

z(4)m = z(40)m + z(41)m nl + z(42)m n2
l + z(43)m n3

l .

As it has been already mentioned in this expression the last two
terms are known in analytical form and computed by R. Lee, P.
Marquard, A. V. Smirnov, V. A. Smirnov and M. Steinhauser
(2013), and the first two terms are not been yet calculated
analytically, but expressions of these coefficients have recently
been obtained in the work Y. Kiyo, G. Mishima and Y. Sumino
(2015) with the help of fitting procedure (NO ERROR BARS
were given!). Let us find the numerical estimates for these two
factors by the MATHEMATICAL method - the method of least
squares.



The estimation of coefficients for nl flavour dependence
and constant term by the least squares method

Using recently calculated results by P. Marquard, A. V.
Smirnov, V. A. Smirnov and M. Steinhauser (2015) for

coefficient z
(4)
m at fixed nl, performed due to consideration of

mPS(µf ), δm(µf ) and special algorithms such as the Laporta
algorithm, Fiesta program:

z(4)m (M2
q )

∣

∣

∣

∣

nl=3

= −1744.8 ± 21.5, z(4)m (M2
q )

∣

∣

∣

∣

nl=4

= −1267.0 ± 21.5,

z(4)m (M2
q )

∣

∣

∣

∣

nl=5

= −859.96 ± 21.5

The uncertainty σ=21.5 may be related to the computation of
the four-loop diagrams without insertion of fermion loops into
gluon propagators. Indeed the inaccuracies σ do not depend on
nl, and this error is almost entirely defined by the constant term

z
(40)
m , while the errors of z

(41)
m are negligible (this our

conclusions not yes confirmed by the MSSS-team)



The estimation of coefficients for nl flavour dependence
and constant term by the least squares method

We use the formulas given above to find the expressions of the

first two coefficients z
(40)
m (M2

q ) and z
(41)
m (M2

q ). In this case we
get the following overdetermined system of linear equations:

z(40)m + 3z(41)m = −1371.77,

z(40)m + 4z(41)m = −614.68,

z(40)m + 5z(41)m = 142.32.

To solve this system we use the method of least squares. For
this we introduce the function which equal to the sum of

squared deviations ∆lk = z
(40)
m + z

(41)
m nlk − ylk , where index k

denotes a number of equation, and ylk is a right part of

equations of the system, i.e. ylk = z
(4)
mk

− z
(42)
m n2

lk
− z

(43)
m n3

lk
:

Φ(z(40)m , z(41)m ) =
3
∑

k=1

∆2
k =

3
∑

k=1

(z(40)m + z(41)m nlk − ylk)
2



The estimation of coefficients for nl flavour dependence
and constant term by the least squares method

Within LSM the solutions of this linear system z
(40)
m , z

(41)
m are

finding the minimums of the function Φ(z
(40)
m , z

(41)
m ), namely :

∂Φ

∂z
(40)
m

= 0,
∂Φ

∂z
(41)
m

= 0.

These conditions allow us to find numerical values of z
(40)
m and

z
(41)
m :

z(40)m (M2) = −3642.9, z(41)m (M2) = 757.05.

Note, that they agree in reasonable agreement with the values

z(40)m (M2) = −3551.5, z(41)m (M2) = 745.42

obtained by Kiyo, Mishima, Sumino (2015) using fitting
procedure.



Evaluation of the inaccuracies of the results obtained

The uncertainty of least squares method can be found with
using known error of σ = ∆ylk ≡ ∆yl = 21.5 for each k=1, 2, 3:

∆z(40)m =

√

√

√

√

3
∑

k=1

(

∂z
(40)
m

∂ylk
∆ylk

)2

=

√

3
∑

k=1

n2
lk

√

3
3
∑

k=1

n2
lk
−
(

3
∑

k=1

nlk

)2
∆yl ,

∆z(41)m =

√

√

√

√

3
∑

k=1

(

∂z
(41)
m

∂ylk
∆ylk

)2

=

√
3∆yl

√

3
3
∑

k=1

n2
lk
−
(

3
∑

k=1

nlk

)2
.

z(40)m (M2
q ) = −3642.9 ± 62.0, z(41)m (M2

q ) = 757.05 ± 15.20.

The fitted results of Kiyo, Mishimo, Sumino have error bars
δ = ±21.5.



Conclusion

Finally we obtain the following results

Mq ≈ mq(M
2
q )(1 + 1.33333as(M

2
q ) + (−1.0414nl + 16.110)a2s(M

2
q )+

+(0.6527n2
l − 29.701nl + 239.30)a3s(M

2
q )+

+(−0.6781n3
l + 46.310n2

l − (864.25 ± 15.2)nl + 4457.7 ± 62.0)a4s(M
2
q ))

Mq ≈ mq(m
2
q)(1 + 1.33333as(m

2
q) + (−1.0414nl + 13.443)a2s(m

2
q)+

+(0.6527n2
l − 26.655nl + 190.59)a3s(m

2
q)+

+(−0.6781n3
l + 43.396n2

l − (745.83 ± 15.2)nl + 3556.4 ± 62.0)a4s(m
2
q)) .

The last formula should be compared with expression recently
estimated by the fitting method (Y. Kiyo, G. Mishima and Y.
Sumino in 2015) (with our understanding of errors)

Mq ≈ mq(m
2
q)(1 + 1.33333as(m

2
q) + (−1.0414nl + 13.443)a2s(m

2
q)+

+(0.6527n2
l − 26.655nl + 190.59)a3s(m

2
q)+

+(−0.6781n3
l + 43.396n2

l − 745.85nl + 3556.5 ± 21.5)a4s(m
2
q)) .



Conclusion

nl expression for mq mass normalized on M2
q

3 mc(M
2
c ) ≈ Mc(1− 1.3333as(M

2
c )− 11.207a2s(M

2
c )− 123.81a3s(M

2
c ) + (−1744.7 ± 76.9)a4s(M

2
c ))

4 mb(M
2
b ) ≈ Mb(1− 1.3333as(M

2
b )− 10.166a2s(M

2
b )− 101.45a3s(M

2
b ) + (−1267.0 ± 86.8)a4s(M

2
b ))

5 mt(M
2
t ) ≈ Mt(1− 1.3333as(M

2
t )− 9.125a2s(M

2
t )− 80.40a3s(M

2
t ) + (−859.9 ± 98.0)a4s(M

2
t ))

expression for mq mass normalized on m2
q

3 mc(m
2
c) ≈ Mc(1− 1.3333as(m

2
c)− 8.541a2s(m

2
c)− 91.36a3s(m

2
c) + (−1325.8 ± 76.9)a4s(m

2
c))

4 mb(m
2
b) ≈ Mb(1− 1.3333as(m

2
b)− 7.500a2s(m

2
b)− 72.05a3s(m

2
b) + (−932.4 ± 86.8)a4s(m

2
b))

5 mt(m
2
t ) ≈ Mt(1− 1.3333as(m

2
t )− 6.459a2s(m

2
t )− 54.04a3s(m

2
t ) + (−603.9 ± 98.0)a4s(m

2
t ))

expression for Mq mass in terms of the mq(M
2
q )

3 Mc ≈ mc(M
2
c )(1 + 1.3333as(M

2
c ) + 12.985a2s(M

2
c ) + 156.07a3s(M

2
c ) + (2263.4 ± 76.9)a4s(M

2
c ))

4 Mb ≈ mb(M
2
b )(1 + 1.3333as(M

2
b ) + 11.944a2s(M

2
b ) + 130.93a3s(M

2
b ) + (1698.2 ± 86.8)a4s(M

2
b ))

5 Mt ≈ mt(M
2
t )(1 + 1.3333as(M

2
t ) + 10.903a2s(M

2
t ) + 107.11a3s(M

2
t ) + (1209.4 ± 98.0)a4s(M

2
t ))

expression for Mq mass in terms of the mq(m
2
q)

3 Mc ≈ mc(m
2
c)(1 + 1.3333as(m

2
c) + 10.318a2s(m

2
c) + 116.49a3s(m

2
c) + (1691.1 ± 76.9)a4s(m

2
c))

4 Mb ≈ mb(m
2
b)(1 + 1.3333as(m

2
b) + 9.277a2s(m

2
b) + 94.41a3s(m

2
b) + (1224.0 ± 86.8)a4s(m

2
b))

5 Mt ≈ mt(m
2
t )(1 + 1.3333as(m

2
t ) + 8.236a2s(m

2
t ) + 73.63a3s(m

2
t ) + (827.3 ± 98.0)a4s(m

2
t ))



Conclusion

Sign-constant and significantly growing coefficients of the
corresponding PT series clearly demonstrate their general
asymptotic structure. Now we present the specific values for
various masses of heavy quarks. For this objective we use
following average values of running masses from PDG for the
initial data: mc(m

2
c)=1.275 GeV, mb(m

2
b)=4.180 GeV,

mt(m
2
t )=163.643 GeV for charm, bottom and top quark masses

respectively. In order to compute value as(m
2
q) at N3LO order

for c, b and t quarks we use the energy dependence of as up to
O(a5s) level, defined through logarithmic terms

L = ln(m2
q(m

2
q)/Λ

(nf )2

MS
) with parameters Λ

(nf )2

MS
, which depend

on number of active flavours and order of approximations. For
b-quark we take the average world value of

Λ
(nf=5)

MS, N3LO
= 215MeV.



Conclusion

The values of Λ
(nf=4)

MS, N3LO
and Λ

(nf=6)

MS, N3LO
are obtained at the

N3LO using appropriate matching transformation conditions.
The computed by us results are:

Λ
(nf=4)

MS, N3LO
= 297MeV, aN

3LO
s (m2

c) = 0.1271,

Λ
(nf=5)

MS, N3LO
= 215MeV, aN

3LO
s (m2

b) = 0.0723,

Λ
(nf=6)

MS, N3LO
= 91MeV, aN

3LO
s (m2

t ) = 0.0346.



Conclusion

Our final result read:

Mc

1GeV
≈ 1.275 + 0.216 + 0.213 + 0.305 + 0.563 ± 0.026 ,

Mb

1GeV
≈ 4.180 + 0.403 + 0.202 + 0.149 + 0.140 ± 0.010 ,

Mt

1GeV
≈ 163.643 + 7.549 + 1.613 + 0.499 + 0.194 ± 0.023 .

Mb ≈ (5.074 ± 0.010) GeV ,

Mt ≈ (173.498 ± 0.023) GeV .



Summary

Estimates of pole heavy quark mass through running mass,
normalized on the running mass, calculated by the least
squares method are in agreement with estimates, performed
by the fitting method

The uncertainties were evaluated and there was shown that
it does not exceed 2 % from coefficients z

(40)
m and z

(41)
m

There were obtained values of pole heavy quark masses

It is very important to get analytical expressions for z
(40)
m

and z
(41)
m (this project: already started- R.N. Lee and K.T.

Mingulov, arXiV:1507.04256)



Thank you for your attention!


