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LHCb processing pipeline
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Streams

› There is number of programs looking for particular physical phenomena called
stripping lines

› Event is selected if it passes at least one stripping line

› Stripping lines are grouped in streams

› Event is copied to all the streams its stripping lines belong
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Event Index architecture overview
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Streams optimization

› Due to limitations of GRID analysis tasks can only be launched on the whole streams

› Streams are a trade-off between the analyses speed and storage space

› Event Index has access to the event-level stripping lines output and can use that to
optimize the distribution of the lines between the streams
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Problem setup

Each event would be duplicated as many times as many streams it belongs to. So that
the total space would be:

𝑆 = ∑
stream

𝑁events in stream

Assuming the lines are equally popular, each stream would be read as many times as
stripping lines are there and each reading would take 𝑁events in stream. The total time
would be:

𝑇 = ∑
stream

𝑁events in stream ⋅ 𝑁lines in stream
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Problem complexity

› There are around 𝑛 = 1600 stripping lines and 1010 events.

› The total number of possible splits is ∑u�
u�=1

u�u�

u�! ≈ 10275

› The boundary cases are obvious - all in one stream (best space) and each line in its
own stream (best time)
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Lines similarity metric
› Compute a metric of similarity between the lines. We used modified pointwise

mutual information

mPMI = 𝑁 𝑃(𝑥, 𝑦)
𝑃 (𝑥)𝑃(𝑦)

,

where 𝑃(𝑥) is the probability that line 𝑥 is present in an event and 𝑃(𝑥, 𝑦) is the
probability that both lines 𝑥 and 𝑦 are present, 𝑁 is the total number of events.

› Use a clustering algorithm to group alike lines together using mPMI estimated from
frequency as affinity.

𝑎(𝑥, 𝑦) = 𝑁(𝑥, 𝑦)
𝑁(𝑥)𝑁(𝑦)

,

where 𝑁(𝑥, 𝑦) is the number of events with both lines 𝑥 and 𝑦 present, 𝑁(𝑥) is
the number of events with line 𝑥 present.
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Clustering - affinity propagation
› Creates clusters by sending messages

between pairs of samples until
convergence

› A dataset is then described using a
small number of exemplars, which are
identified as those most representative
of other samples.

› The messages sent between pairs
represent the suitability for one sample
to be the exemplar of the other, which
is updated in response to the values
from other pairs. This updating
happens iteratively until convergence.

Brendan J. Frey; Delbert Dueck (2007). "Clustering by passing messages between data points". Science 315 (5814): 972–976. Text:
http://scikit-learn.org 11



Clustering - DBSCAN
› A point 𝑝 is a core point if at least

minPts points are within distance 𝜖 of
it, and those points are said to be
directly reachable from 𝑝. No points
are directly reachable from a non-core
point.

› A point 𝑞 is reachable from 𝑝 if there is
a path 𝑝1, … , 𝑝u� with 𝑝1 = 𝑝 and
𝑝u� = 𝑞, where each 𝑝u� + 1 is directly
reachable from 𝑝u�.

› All points not reachable from any other
point are outliers.
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Ester, Martin; Kriegel, Hans-Peter; Sander, Jorg; Xu, Xiaowei (1996), KDD-96. AAAI Press. pp. 226–231. Picture: Wikipedia 12



Trial setup

› Took a random sample of 2 ⋅ 106 events

› Discarded the lines with no events in the sample

› Computed mPMI affinities

› Computed clusters using different algorithms
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Clustering performance
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Clusters overview
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Summary

› There is little to gain in terms of space (2%)

› The theoritcal maximum speedup is considerable (8000%)

› With clustering we were able to get 10x speedup for a 5% increase in space
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