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Introduction

Primary vertex finding can be interpreted as 1d clustering problem

We will compare two methods:

Sparse model-based clustering

and

EM algorithm

Model-based clustering can include available information as prior
densities:

Number of clusters/vertices
Cluster size/number of tracks per vertex
Cluster/vertex spread

Use a normal model for each cluster

Study performance and sensitivity to priors with a simplified simulation
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The Data

Track multiplicity
We have simulated proton-proton interactions at LHC energy with PYTHIA
and applied some basic cuts in p and η

The empirical distribution g(M) of the track multiplicity M per interaction
vertex is smoothed by a kernel estimator and stored for further use
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The Data

Vertex spread
The z-positions of the tracks produced in an interaction are smeared by the
extrapolation error from the innermost pixel layer and multiple scattering in
the beam tube

The empirical distribution of the resulting vertex spread sk is described by its
mean µs = 0.048 mm and its standard deviation σs = 0.013 mm
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The Data

Bunch crossings
A bunch-crossing consists of K superimposed interactions

The number K is drawn from a Poisson distribution

Each bunch crossing can be segmented into sections

Cluster finding proceeds independently in each section

Number of components
Assume that there are N tracks in a segment

The three most likely numbers of clusters K1,K2,K3 are obtained by
looking up the likelihood of the multiplicity M = N/K in the empirical
distribution g(M)
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Sparse model-based clustering

Model and priors I
Input: N tracks with z-positions zi, i = 1, . . . , N

Initial K is the largest of K1 +K0,K2 +K0,K3 +K0 with K0 = 5

zi are assumed to be drawn from a Gaussian mixture:

f(zi|θ1, . . . ,θK ,η) =
∑K

k=1 ηk ϕk(zi|θk)

θk = (µk, σ
2
k) and ηk are the component specific parameters and the

component weight of component k

Sparse solutions w.r.t. K are obtained by choosing an appropriate prior for
the component weights η

We use a symmetric Dirichlet prior with a concentration parameter e0:

p(η1, . . . , ηK |e0) =
Γ(Ke0)

Γ(e0)K

K∏
k=1

ηe0−1
k
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Sparse model-based clustering

Model and priors II
Smaller values of e0 give fewer clusters

The prior of the component means is normal, the prior of the component
variances is inverse Gaussian

Clustering

Data augmentation: Introduce latent allocation variables S = (S1, . . . , SN )

with values in {1, . . . ,K} such that for i = 1, . . . , N

f(zi|θ1, . . . ,θK , Si = k) = ϕ(zi|µk, σ
2
k), Pr(Si = k|η) = ηk

Initial values of S from k-means clustering (MATLAB function kmeans)

Estimation: Generate a Markov chain from the posterior distribution of S by
a Gibbs sampler

Cluster identification: Choose the configuration of S with the largest
posterior probability
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Sparse model-based clustering

Markov Chain Monte Carlo
A Markov chain is a non-independent random sample with the Markov
property:

f(Xt+1|X0 = x0, . . . , Xt = xt) = f(Xt+1|Xt = xt)

Depending on how it is generated, a Markov chain may or may not have a
stationary or equlibrium distribution

Given a target distribution π(x), Markov Chain Monte Carlo (MCMC)
generates a Markov chain with stationary distribution equal to π(x)

The target distribution does not have to be normalized

MCMC is therefore an indispensable tool in Bayesian inference
There are two basic ways of generating a Markov chain with a given
stationary (target) distribution:

Metropolis–Hastings sampling
Gibbs sampling
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Sparse model-based clustering

Metropolis–Hastings sampling

Metropolis–Hastings sampling of a given target distribution π(x) works as
follows

Let xt be the current value of the chain and x′ a value drawn from the
proposal density p(x) which may depend on xt

Compute the acceptance probability:

α = min

(
1,
π(x′)p(xt)

π(xt)p(x′)

)

Draw a uniform random number u in the interval [0,1]

If u < α, set xt+1 = x′; otherwise set xt+1 = xt

If p(x) does not depend on xt, the sampler is an independence sampler

p(x|xt) is symmetric around xt, the sampler is a random walk sampler
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Sparse model-based clustering

Gibbs sampling
Useful for sampling from the unknown joint distribution of several
variables

The conditional distribution of each xi given all other variables has to be
known

For each variable in turn, draw a random number from this conditional
distribution

The joint distribution is the stationary distribution of the resulting Markov
chain
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Sparse model-based clustering

Burn-in and diagnostics
As it may take some time to reach the stationary distribution it is frequent
practice to discard an initial segment of the chain

This is called burn-in

It is not always clear when or whether the stationary distribution has been
reached

Visual inspection of the chain can show whether the entire support of the
target is explored: good vs bad mixing

The autocorrelation of the chain can be used to compute an effective
sample size
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EM algorithm

Iterative Maximum-Likelihood
For the most likely numbers of clusters K = K1,K2,K3, . . . ,K3 + 5:

1 Choose starting values of mixture parameters
(µ1, . . . , µK , σ

2
1 , . . . , σ

2
K , η1, . . . , ηK)

2 Compute the association probabilities pik and pk:

pik =
ηk ϕ(zi;µk, σ

2
k)∑K

j=1 ηl ϕ(zi;µj , σ2
j )
, pk =

N∑
i=1

pik

3 Estimation of weights and cluster parameters:

ηk =
pk
N
, µk =

∑N
i=1 pikzi

pk
, σ2

k =

∑N
i=1 pik(zi − µk)2

pk

4 Repeat steps 2 and 3 until convergence

Choose the clustering with the smallest BIC

We have used the MATLAB function fitgmdist
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Feasibility study

Bunch crossings
Superimpose K interactions to a bunch crossing

K is drawn from a Poisson distribution with mean λ = 100

The vertex positions zk, k = 1, . . . ,K are distributed independently
according to a normal distribution with mean µ = 0 mm and σ = 65 mm

We have analyzed 600 bunch crossings with about 60000 interactions and
about 2 million tracks

Sections
The z-coordinates of all tracks are filled in a histogram with a bin width of
h = 1 mm

Boundaries of basic sections are defined by empty bins

A fixed number (10) of basic sections are combined to the final sections

Clustering proceeds independently in each final section
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Feasibility study

Simulation Runs
Run EM: EM algorithm

Run MB1: Model-based clustering, e0 = 0.1, long MC (1000+5000)

Run MB2: Model-based clustering, e0 = 1, long MC (1000+5000)

Run MB3: Model-based clustering, e0 = 1, short MC (500+1000)
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Results

Run EM: true vs estimated cluster number
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Results

Run EM: estimated minus true cluster number

Est - true number of clusters
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Results

Run EM: cluster purity

Cluster Purity
0 0.2 0.4 0.6 0.8 1

A
bs

. f
re

q.

#104

0

0.5

1

1.5

2

2.5

3

3.5

4

7=0.93

R. Frühwirth 24 Vertex finding



Results

Run MB1: true vs estimated cluster number
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Results

Run MB1: estimated minus true cluster number
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Results

Run MB1: cluster purity
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Results

Run MB2: true vs estimated cluster number
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Results

Run MB2: estimated minus true cluster number

Est - true number of clusters
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Results

Run MB2: cluster purity

Cluster Purity
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Results

Run MB3: true vs estimated cluster number
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Results

Run MB3: estimated minus true cluster number

Est - true number of clusters
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Results

Run MB3: cluster purity

Cluster Purity
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Discussion and outlook

1 Introduction

2 The Data

3 Sparse model-based clustering

4 EM algorithm

5 Feasibility study

6 Results

7 Discussion and outlook

8 References

R. Frühwirth 34 Vertex finding



Discussion and outlook

Pros
Prior information on number of tracks per vertex and vertex spread is used

This information can be extracted from runs with low luminosity, where
vertex finding is easy

Only the expected (average) number of vertices depends on the luminosity

With a bit of fiddling we get the correct average number of vertices, in
contrast to EM

Further tuning of the parameters of the priors such as e0 possible, e.g. using
spearmint oder hyperopt

It’s fun to try . . . especially if you are bored by all this Kalman filter stuff

Cons
MCMC sampling is slow by HEP standards:
clustering takes several seconds rather than a fraction of a second

Fine-tuning may take a long time

Hardly suitable for standard vertex finding
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Discussion and outlook

Pros
Prior information on number of tracks per vertex and vertex spread is used

This information can be extracted from runs with low luminosity, where
vertex finding is easy

Only the expected (average) number of vertices depends on the luminosity

With a bit of fiddling we get the correct average number of vertices, in
contrast to EM

Further tuning of the parameters of the priors such as e0 possible, e.g. using
spearmint oder hyperopt

It’s fun to try . . . especially if you are bored by all this Kalman filter stuff

Cons
MCMC sampling is slow by HEP standards:
clustering takes several seconds rather than a fraction of a second

Fine-tuning may take a long time

Maybe the Kalman filter isn’t that bad after all . . .
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Discussion and outlook

Possible other applications
There are interesting problems with fewer observations and fewer
clusters
Ring finding in RICH detectors

Model is circle (or ellipse) plus radial uncertainty
Put prior distribution on radius
Gives a ring-shaped prior

Cluster finding in calorimeters

Prior knowledge of the cluster shapes can be injected into the clustering
Prior information would have to depend on the type and the location of
the shower

We would have to move to non-Gaussian models, possibly more complex
samplers

Merits some further investigation
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Constrained fits with non-Gaussian distributions
Rudolf Frühwirth1, Oliver Cencic2
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Introduction

Observed data are often in conflict with known conservation laws such as mass, momentum
or energy balances.

Observed data are often non-Gaussian.

In data reconciliation (DR) contradictions are resolved by statistically adjusting the data,
assuming their uncertainty is described by a probability density function, not necessarily
Gaussian.

There are N measured or unmeasured variables that take values in a subset D ⊆ RN.

The I ≤ N measured variables form an I -dimensional random variable with known joint
density. The latter is called the prior density.

The prior density can be either objective, i.e. the model of a measurement process, or
subjective, i.e. the formalization of an expert opinion.

The variables are subject to linear or nonlinear constraints that define a manifold S ⊂ RN

of dimension P < N .

The posterior density is obtained by restricting the prior to S and normalizing it to 1.

Example 1: Simple linear constraint

Three observations x1, x2 and x3 with the prior density f (x1, x2, x3).

Constraint equation x3 = x1 + x2 defines a plane in R3.

The prior density is restricted to this plane and normalized to 1.

This gives the posterior density of x1, x2, x3 and its marginals.
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General linear constraints

Solve constraints for dependent variables u as a function of free variables w :

u = Dw + d

For joint prior f (u;w ) the joint posterior of w given by:

π(w ) ∝ f (Dw + d ;w )

Explicit calculation of the normalizing constant is avoided by drawing a random
sample from the posterior density π(w ) by Markov Chain Monte Carlo (MCMC).
The sample is not independent, as each draw depends on the previous one.

From this sample the joint posterior density and its moments can be estimated, along
with the marginal densities, moments and quantiles.

The sampler best suited to the problem of DR is the Independence Sampler (IS).

The prior density of w can be chosen as the proposal density.

Independence sampler

Set i = 1, choose the sample size L and the starting value w1.

Draw a proposal value ŵ from the proposal density p(w ).

Compute the acceptance probability α:

α(wi , ŵ ) = min

(
1,
π(ŵ )p(wi)

π(wi)p(ŵ )

)

Draw a uniform random number u ∈ [0,1].

If u ≤ α, accept the proposal and set wi+1 = ŵ , otherwise set wi+1 = wi .

Increase i by 1. If i < L, go to 1, otherwise go to 1.

Stop sampling.

Example 2: Combination of measurements

Three measurements x1, x2, x3 of a small cross section x .

Want to combine the measurements by imposing x1 = x2 = x3.

Three experimental densities f1(x1), f2(x2), f3(x3) restricted to the positive axis.

Densities need not be given in closed form.

Must be possible to compute the densities and to draw random numbers from them.

Example 2: Combination of measurements (ctd)

Example priors:

x1 ∼Ex(1.1) Exponential
x2 ∼Ga(2,0.5) Gamma
x3 ∼TrNorm(0,1.2,0,∞) Half Normal

Posterior marginals under assumption of independence:
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Correlations can be introduced via a Gaussian copula.

Posterior marginals with ρ = 0.25:
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Robust Fitting

The M-estimator can be generalized to non-Gaussian observations.

Compute residual ri = (Epr [xi ]− Epo[xi ])/σpr [xi ] for all variables xi .

Compute weight according to:

w(ri) =
ϕ(ri)

ϕ(ri) + ϕ(c)

ϕ(0) + ϕ(c)

ϕ(0)

where ϕ is a symmetric pdf and c a cut.
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The priors are stretched around their mode by the factor si = 1/
√
wi .

The estimation is iterated until convergence.

The initial weights can be computed in normal approximation.

Applications in Event Reconstruction

Track errors are sometimes non-Gaussian, e.g. with the Gaussian-sum filter.

Vertex fitting and kinematic fitting can be extended to non-Gaussian track errors.

Momentum conservation gives linear constraints.

Energy conservation and vertex constraints are nonlinear.

Nonlinear constraints are linearized at a suitable expansion point.

The dependent variables are computed via a Newton iteration.

The sampler is basically the same as in the linear case.
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O. Cencic and R. Frühwirth, A general framework for data reconciliation—Part I:
linear constraints, Comp. Chem. Eng. 75 (2015) 196–208.
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Shows how to impose linear or non-linear constraints on non-Gaussian data

Independence sampler is used to draw from the posterior distribution
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A new Riemann fit for circular tracks
Rudolf Frühwirth1, Are Strandlie2
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Introduction

Fast fits of circular tracks are important in the following contexts:

Fast quality check in track finding

Track fit in track trigger

Fast reference track for Kalman filter

Preliminary track for broken line fit

Many flavours available

The Riemann sphere

The Riemann sphere sits on the (x ,y )-plane

Its south pole is the origin, its north pole is (0,0,1)

Points in the plane are mapped to the sphere by stereographic projection

Stereographic projection

Track measurements in the (x ,y )-plane:

(Ri ,Φi), i = 1, . . . ,N

Mapping to the Riemann sphere:

xi = Ri cos Φi/(1 +Ri
2)

yi = Ri sin Φi/(1 +Ri
2)

zi = Ri
2/(1 +Ri

2)

The mapping is conformal and maps circles in the plane to circles on the sphere

The mapped points lie in a plane

The circle fit is transformed into fitting a plane to the mapped points

Plane fit

Fit plane nr + c = 0 by minimizing the following objective function:

S =

N∑

i=1

(1 +Ri
2)2di

2 =

N∑

i=1

pidi
2

where di is the distance from the point r = (xi ,yi , zi)T to the plane

Normal vector n is an eigenvector to the smallest eigenvalue of the sample covariance

matrix

A =
1
N

N∑

i=1

pi(ri − r0)(ri − r0)T

with r0 = (x0,y0, z0)T and

x0 =

N∑

i=1

pixi
/ N∑

i=1

pi , y0 =

N∑

i=1

piyi
/ N∑

i=1

pi , z0 =

N∑

i=1

pizi
/ N∑

i=1

pi

Given n, c is computed as

c = −nTr0

Modified fit

Chernov [3] recommends centering and scaling of the measurements before mapping to

the Riemann sphere

Transform to Cartesian coordinates:

Xi = Ri cos Φi , Yi = Ri sin Φi , i = 1, . . . ,N

Centering:

Xc ,i = Xi −X , Yc ,i = Yi −Y , i = 1, . . . ,N

Scaling:

s = 0.5/
√

(XcTXc +YcTYc)/N

Xcs = s ·Xc , Ycs = s ·Yc

Transform back to polar coordinates and perform Riemann fit

Simulation study in a generic cylindrical detector

About 10–12 hits per track

Hit resolution varies between 0.2 mm and 1.6 mm

No background, perfect pattern recognition
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Improvement of resolution

Comparison of standard Riemann fit with the modified fit

Measure improvement by ratio of generalized variance
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Shows how to improve the resolution of the Riemann circle fit following a
proposal by Chernov
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The End

Thank you for your attention!
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