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Introduction

@ Primary vertex finding can be interpreted as 1d clustering problem
@ We will compare two methods:

Sparse model-based clustering

and

EM algorithm

Model-based clustering can include available information as prior
densities:

o Number of clusters/vertices
o Cluster size/number of tracks per vertex
o Cluster/vertex spread

Use a normal model for each cluster

Study performance and sensitivity to priors with a simplified simulation

R. Frahwirth 4 Vertex finding



The Data

e The Data
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The Data

Track multiplicity
@ We have simulated proton-proton interactions at LHC energy with PYTHIA

and applied some basic cuts in p and n
@ The empirical distribution g(M) of the track multiplicity M per interaction

vertex is smoothed by a kernel estimator and stored for further use
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The Data

Vertex spread

@ The z-positions of the tracks produced in an interaction are smeared by the
extrapolation error from the innermost pixel layer and multiple scattering in
the beam tube

@ The empirical distribution of the resulting vertex spread sy, is described by its
mean ps = 0.048 mm and its standard deviation o, = 0.013 mm
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The Data

Bunch crossings

@ A bunch-crossing consists of K superimposed interactions
@ The number K is drawn from a Poisson distribution

@ Each bunch crossing can be segmented into sections

@ Cluster finding proceeds independently in each section

Number of components

@ Assume that there are N tracks in a segment

@ The three most likely numbers of clusters K, K2, K3 are obtained by
looking up the likelihood of the multiplicity M = N/K in the empirical
distribution g(M)
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Sparse model-based clustering

9 Sparse model-based clustering
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Sparse model-based clustering

Model and priors |

@ Input: N tracks with z-positions z;, i =1,..., N
@ Initial K is the largest of K1 + Ko, K2 + Ko, K3 + Ko with Ko = 5
@ z; are assumed to be drawn from a Gaussian mixture:

f(zil01, ..., 0k,m) = 30 nk i (il Ok)

0:. = (ux, oz) and n;, are the component specific parameters and the
component weight of component &

Sparse solutions w.r.t. K are obtained by choosing an appropriate prior for
the component weights n

@ We use a symmetric Dirichlet prior with a concentration parameter ey:
D(Keo) 7T cot

p(n1:~--777K|30) = K 7719
F(eo) )
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Sparse model-based clustering

Model and priors |l

@ Smaller values of e give fewer clusters

@ The prior of the component means is normal, the prior of the component
variances is inverse Gaussian

Clustering

@ Data augmentation: Introduce latent allocation variables S = (S1,...,Sn)
with values in {1,..., K} suchthatfori =1,..., N

f(zil61,...,0k, S = k) = o(zi|uk,0%), Pr(Si =kln) =k

@ Initial values of S from k-means clustering (MATLAB function kmeans)

@ Estimation: Generate a Markov chain from the posterior distribution of S by
a Gibbs sampler

@ Cluster identification: Choose the configuration of S with the largest
posterior probability
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Sparse model-based clustering

Markov Chain Monte Carlo

@ A Markov chain is a hon-independent random sample with the Markov
property:

f(Xt+1|X0 = X0, ... ,Xt = J?t) S f(Xt+1|Xt = xt)

@ Depending on how it is generated, a Markov chain may or may not have a
stationary or equlibrium distribution

@ Given a target distribution 7(x), Markov Chain Monte Carlo (MCMC)
generates a Markov chain with stationary distribution equal to 7 (z)

@ The target distribution does not have to be normalized

@ MCMC is therefore an indispensable tool in Bayesian inference

@ There are two basic ways of generating a Markov chain with a given
stationary (target) distribution:

o Metropolis—Hastings sampling
o Gibbs sampling
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Sparse model-based clustering

Metropolis—Hastings sampling

@ Metropolis—Hastings sampling of a given target distribution () works as
follows

Let 2; be the current value of the chain and =’ a value drawn from the
proposal density p(z) which may depend on z;

Compute the acceptance probability:
a = min <1, T
™

Draw a uniform random number « in the interval [0,1]
Ifu < a, set x;11 = 2’; otherwise set z;11 = x4
If p(z) does not depend on z;, the sampler is an independence sampler

p(z|z¢) is symmetric around z, the sampler is a random walk sampler
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Sparse model-based clustering

Gibbs sampling

@ Useful for sampling from the unknown joint distribution of several
variables

@ The conditional distribution of each z; given all other variables has to be
known

@ For each variable in turn, draw a random number from this conditional
distribution

@ The joint distribution is the stationary distribution of the resulting Markov
chain
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Sparse model-based clustering

Burn-in and diagnostics

@ As it may take some time to reach the stationary distribution it is frequent
practice to discard an initial segment of the chain

@ This is called burn-in

@ It is not always clear when or whether the stationary distribution has been
reached

@ Visual inspection of the chain can show whether the entire support of the
target is explored: good vs bad mixing

@ The autocorrelation of the chain can be used to compute an effective
sample size
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EM algorithm

0 EM algorithm
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EM algorithm

Iterative Maximum-Likelihood

@ For the most likely numbers of clusters K = K1, K2, K3, ..., K3 + 5:

@ Choose starting values of mixture parameters
2 2
(:ulv'“a/'LKaUIa"'7UK77)1)"'777K)

© Compute the association probabilities p;; and px:

Zi5 ,G'
Dik = i P2 i, O y Pk = szk
Sl m (26 5,02)

© Estimation of weights and cluster parameters:

Nk = L2 Lk M 0.2 _ Ef\le pik(Zi = /.Lk)z
N’ Dk POk Dh

© Repeat steps 2 and 3 until convergence

@ Choose the clustering with the smallest BIC
@ We have used the MATLAB function fitgmdist

R. Frahwirth 17 Vertex finding



Feasibility study

© Feasibility study
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Feasibility study

Bunch crossings

@ Superimpose K interactions to a bunch crossing
@ K is drawn from a Poisson distribution with mean A\ = 100

@ The vertex positions z,, k=1, ..., K are distributed independently
according to a normal distribution with mean . = 0 mm and o = 65 mm

@ We have analyzed 600 bunch crossings with about 60000 interactions and
about 2 million tracks

@ The z-coordinates of all tracks are filled in a histogram with a bin width of
h=1mm

@ Boundaries of basic sections are defined by empty bins
@ A fixed number (10) of basic sections are combined to the final sections
@ Clustering proceeds independently in each final section
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Feasibility study

Simulation Runs

@ Run EM: EM algorithm

@ Run MB1: Model-based clustering, eo = 0.1, long MC (1000+5000)
@ Run MB2: Model-based clustering, ep = 1, long MC (1000+5000)
@ Run MB3: Model-based clustering, ep = 1, short MC (500+1000)
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Results

e Results
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%HEPH Results

Run EM: true vs estimated cluster number
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Results
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Results

Run EM: cluster purity
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%HEPH Results

Run MB1: true vs estimated cluster number
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Results

Run MB1: estimated minus true cluster number
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Results

Run MB1: cluster purity
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%HEPH Results

Run MB2: true vs estimated cluster number
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Results

Run MB2: estimated minus true cluster number
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Results

Run MB2: cluster purity
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%HEPH Results

Run MB3: true vs estimated cluster number
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Results

Run MBS3: estimated minus true cluster number
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Results

Run MBS3: cluster purity

x10%4

6 . . . .
11=0.95

0 0.2 0.4 0.6 0.8 1
Cluster Purity

R. Frahwirth 33 Vertex finding



Discussion and outlook

a Discussion and outlook
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Discussion and outlook

@ Prior information on number of tracks per vertex and vertex spread is used

@ This information can be extracted from runs with low luminosity, where
vertex finding is easy

@ Only the expected (average) number of vertices depends on the luminosity

@ With a bit of fiddling we get the correct average number of vertices, in
contrast to EM

@ Further tuning of the parameters of the priors such as e possible, e.g. using
spearmint oder hyperopt

@ It's fun to try ... especially if you are bored by all this Kalman filter stuff J

@ MCMC sampling is slow by HEP standards:
clustering takes several seconds rather than a fraction of a second

@ Fine-tuning may take a long time
@ Hardly suitable for standard vertex finding @
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Discussion and outlook

@ Prior information on number of tracks per vertex and vertex spread is used

@ This information can be extracted from runs with low luminosity, where
vertex finding is easy

@ Only the expected (average) number of vertices depends on the luminosity

@ With a bit of fiddling we get the correct average number of vertices, in
contrast to EM

@ Further tuning of the parameters of the priors such as e possible, e.g. using
spearmint oder hyperopt

@ It's fun to try ... especially if you are bored by all this Kalman filter stuff J

@ MCMC sampling is slow by HEP standards:
clustering takes several seconds rather than a fraction of a second

@ Fine-tuning may take a long time
9 Maybe the Kalman filter isn’t that bad after all ... @
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Discussion and outlook

Possible other applications

@ There are interesting problems with fewer observations and fewer
clusters
@ Ring finding in RICH detectors
o Model is circle (or ellipse) plus radial uncertainty
o Put prior distribution on radius
o Gives a ring-shaped prior
@ Cluster finding in calorimeters
o Prior knowledge of the cluster shapes can be injected into the clustering
o Prior information would have to depend on the type and the location of
the shower
@ We would have to move to non-Gaussian models, possibly more complex
samplers

@ Merits some further investigation
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Advertisement

Constrained fits with non-Gaussian distributions
Rudolf Frihwirthl, Oliver Cencic2

1 Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
2 |nstitute of Water Quality, Resources and Waste Management, TU Wien, Vienna, Austria

@ Shows how to impose linear or non-linear constraints on non-Gaussian data

@ Independence sampler is used to draw from the posterior distribution

A new Riemann fit for circular tracks
Rudolf Frihwirthl, Are Strandlie2

L Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria

2 Norwegian University of Science and Technology, Gjgvik, Norway

@ Shows how to improve the resolution of the Riemann circle fit following a
proposal by Chernov

R. Frahwirth 41 Vertex finding



The End

Thank you for your attention!
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