Vertex finding by sparse model-based clustering

Korbinian Eckstein ${ }^{1}$, Rudi Frühwirth ${ }^{1}$ Sylvia Frühwirth-Schnatter ${ }^{2}$
${ }^{1}$ Institute of High Energy Physics
Austrian Academy of Sciences, Vienna
${ }^{2}$ Institute for Statistics and Mathematics Vienna University of Economics and Business

ACAT 2016, UTFSM, Valparaíso January 21, 2016

Outline
$\mathbf{W}^{\underline{12}}$
(1) Introduction
(2) The Data
(3) Sparse model-based clustering

4 EM algorithm
(5) Feasibility study

6 Results
(7) Discussion and outlook
(8) References
(1) Introduction
(2) The Data

3 Sparse model-based clustering

4 EM algorithm
(5) Feasibility study
(6) Results
(7) Discussion and outlook
(8) References

- Primary vertex finding can be interpreted as 1d clustering problem
- We will compare two methods:

Sparse model-based clustering

and

EM algorithm

- Model-based clustering can include available information as prior densities:
- Number of clusters/vertices
- Cluster size/number of tracks per vertex
- Cluster/vertex spread
- Use a normal model for each cluster
- Study performance and sensitivity to priors with a simplified simulation
(1) Introduction
(2) The Data

3 Sparse model-based clustering

4 EM algorithm
(5) Feasibility study
(6) Results
(7) Discussion and outlook
(8) References

The Data

Track multiplicity

- We have simulated proton-proton interactions at LHC energy with PYTHIA and applied some basic cuts in p and η
- The empirical distribution $g(M)$ of the track multiplicity M per interaction vertex is smoothed by a kernel estimator and stored for further use

The Data

Vertex spread

- The z-positions of the tracks produced in an interaction are smeared by the extrapolation error from the innermost pixel layer and multiple scattering in the beam tube
- The empirical distribution of the resulting vertex spread s_{k} is described by its mean $\mu_{s}=0.048 \mathrm{~mm}$ and its standard deviation $\sigma_{s}=0.013 \mathrm{~mm}$

Bunch crossings

- A bunch-crossing consists of K superimposed interactions
- The number K is drawn from a Poisson distribution
- Each bunch crossing can be segmented into sections
- Cluster finding proceeds independently in each section

Number of components

- Assume that there are N tracks in a segment
- The three most likely numbers of clusters K_{1}, K_{2}, K_{3} are obtained by looking up the likelihood of the multiplicity $M=N / K$ in the empirical distribution $g(M)$

(1) Introduction

(2) The Data
(3) Sparse model-based clustering
4) EM algorithm
(5) Feasibility study
(6) ResultsDiscussion and outlook
(8) References

Model and priors I

- Input: N tracks with z-positions $z_{i}, i=1, \ldots, N$
- Initial K is the largest of $K_{1}+K_{0}, K_{2}+K_{0}, K_{3}+K_{0}$ with $K_{0}=5$
- z_{i} are assumed to be drawn from a Gaussian mixture:

$$
f\left(z_{i} \mid \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}, \boldsymbol{\eta}\right)=\sum_{k=1}^{K} \eta_{k} \varphi_{k}\left(z_{i} \mid \boldsymbol{\theta}_{k}\right)
$$

- $\boldsymbol{\theta}_{k}=\left(\mu_{k}, \sigma_{k}^{2}\right)$ and η_{k} are the component specific parameters and the component weight of component k
- Sparse solutions w.r.t. K are obtained by choosing an appropriate prior for the component weights η
- We use a symmetric Dirichlet prior with a concentration parameter e_{0} :

$$
p\left(\eta_{1}, \ldots, \eta_{K} \mid e_{0}\right)=\frac{\Gamma\left(K e_{0}\right)}{\Gamma\left(e_{0}\right)^{K}} \prod_{k=1}^{K} \eta_{k}^{e_{0}-1}
$$

Model and priors II

- Smaller values of e_{0} give fewer clusters
- The prior of the component means is normal, the prior of the component variances is inverse Gaussian

Clustering

- Data augmentation: Introduce latent allocation variables $\boldsymbol{S}=\left(S_{1}, \ldots, S_{N}\right)$ with values in $\{1, \ldots, K\}$ such that for $i=1, \ldots, N$

$$
f\left(z_{i} \mid \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}, S_{i}=k\right)=\varphi\left(z_{i} \mid \mu_{k}, \sigma_{k}^{2}\right), \quad \operatorname{Pr}\left(S_{i}=k \mid \boldsymbol{\eta}\right)=\eta_{k}
$$

- Initial values of S from k-means clustering (MATLAB function kmeans)
- Estimation: Generate a Markov chain from the posterior distribution of S by a Gibbs sampler
- Cluster identification: Choose the configuration of S with the largest posterior probability

Markov Chain Monte Carlo

- A Markov chain is a non-independent random sample with the Markov property:

$$
f\left(X_{t+1} \mid X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right)=f\left(X_{t+1} \mid X_{t}=x_{t}\right)
$$

- Depending on how it is generated, a Markov chain may or may not have a stationary or equlibrium distribution
- Given a target distribution $\pi(x)$, Markov Chain Monte Carlo (MCMC) generates a Markov chain with stationary distribution equal to $\pi(x)$
- The target distribution does not have to be normalized
- MCMC is therefore an indispensable tool in Bayesian inference
- There are two basic ways of generating a Markov chain with a given stationary (target) distribution:
- Metropolis-Hastings sampling
- Gibbs sampling

Metropolis-Hastings sampling

- Metropolis-Hastings sampling of a given target distribution $\pi(x)$ works as follows
- Let x_{t} be the current value of the chain and x^{\prime} a value drawn from the proposal density $p(x)$ which may depend on x_{t}
- Compute the acceptance probability:

$$
\alpha=\min \left(1, \frac{\pi\left(x^{\prime}\right) p\left(x_{t}\right)}{\pi\left(x_{t}\right) p\left(x^{\prime}\right)}\right)
$$

- Draw a uniform random number u in the interval $[0,1]$
- If $u<\alpha$, set $x_{t+1}=x^{\prime}$; otherwise set $x_{t+1}=x_{t}$
- If $p(x)$ does not depend on x_{t}, the sampler is an independence sampler
- $p\left(x \mid x_{t}\right)$ is symmetric around x_{t}, the sampler is a random walk sampler

Sparse model-based clustering
Gibbs sampling

- Useful for sampling from the unknown joint distribution of several variables
- The conditional distribution of each x_{i} given all other variables has to be known
- For each variable in turn, draw a random number from this conditional distribution
- The joint distribution is the stationary distribution of the resulting Markov chain

Burn-in and diagnostics

- As it may take some time to reach the stationary distribution it is frequent practice to discard an initial segment of the chain
- This is called burn-in
- It is not always clear when or whether the stationary distribution has been reached
- Visual inspection of the chain can show whether the entire support of the target is explored: good vs bad mixing
- The autocorrelation of the chain can be used to compute an effective sample size
(1) Introduction
(2) The Data

3 Sparse model-based clustering

4 EM algorithm
(5) Feasibility study
(6) Results
(7) Discussion and outlook
(8) References

Iterative Maximum-Likelihood

- For the most likely numbers of clusters $K=K_{1}, K_{2}, K_{3}, \ldots, K_{3}+5$:
(1) Choose starting values of mixture parameters

$$
\left(\mu_{1}, \ldots, \mu_{K}, \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}, \eta_{1}, \ldots, \eta_{K}\right)
$$

(2) Compute the association probabilities $p_{i k}$ and p_{k} :

$$
p_{i k}=\frac{\eta_{k} \varphi\left(z_{i} ; \mu_{k}, \sigma_{k}^{2}\right)}{\sum_{j=1}^{K} \eta_{l} \varphi\left(z_{i} ; \mu_{j}, \sigma_{j}^{2}\right)}, \quad p_{k}=\sum_{i=1}^{N} p_{i k}
$$

(3) Estimation of weights and cluster parameters:

$$
\eta_{k}=\frac{p_{k}}{N}, \mu_{k}=\frac{\sum_{i=1}^{N} p_{i k} z_{i}}{p_{k}}, \sigma_{k}^{2}=\frac{\sum_{i=1}^{N} p_{i k}\left(z_{i}-\mu_{k}\right)^{2}}{p_{k}}
$$

(4) Repeat steps 2 and 3 until convergence

- Choose the clustering with the smallest BIC
- We have used the MatLab function fitgmdist
(1) Introduction
(2) The Data

3 Sparse model-based clustering

4 EM algorithm
(5) Feasibility studyDiscussion and outlook
(8) References

Bunch crossings

- Superimpose K interactions to a bunch crossing
- K is drawn from a Poisson distribution with mean $\lambda=100$
- The vertex positions $z_{k}, k=1, \ldots, K$ are distributed independently according to a normal distribution with mean $\mu=0 \mathrm{~mm}$ and $\sigma=65 \mathrm{~mm}$
- We have analyzed 600 bunch crossings with about 60000 interactions and about 2 million tracks

Sections

- The z-coordinates of all tracks are filled in a histogram with a bin width of $h=1 \mathrm{~mm}$
- Boundaries of basic sections are defined by empty bins
- A fixed number (10) of basic sections are combined to the final sections
- Clustering proceeds independently in each final section

Simulation Runs

- Run EM: EM algorithm
- Run MB1: Model-based clustering, $e_{0}=0.1$, long MC (1000+5000)
- Run MB2: Model-based clustering, $e_{0}=1$, long MC (1000+5000)
- Run MB3: Model-based clustering, $e_{0}=1$, short MC (500+1000)
(1) Introduction

2 The Data

3 Sparse model-based clustering

4 EM algorithm
(5) Feasibility study

6 ResultsDiscussion and outlook

8 References

Run EM: true vs estimated cluster number

Run EM: estimated minus true cluster number

Run EM: cluster purity

Run MB1: true vs estimated cluster number

Run MB1: estimated minus true cluster number

Run MB1: cluster purity

Run MB2: true vs estimated cluster number

Run MB2: estimated minus true cluster number

Run MB2: cluster purity

Run MB3: true vs estimated cluster number

Run MB3: estimated minus true cluster number

Run MB3: cluster purity

(1) Introduction
(2) The Data

3 Sparse model-based clustering

4 EM algorithm
(5) Feasibility study
(6) Results

7 Discussion and outlook
(8) References

Pros

(3) Prior information on number of tracks per vertex and vertex spread is used
(3) This information can be extracted from runs with low luminosity, where vertex finding is easy
(3) Only the expected (average) number of vertices depends on the luminosity
(3ith a bit of fiddling we get the correct average number of vertices, in contrast to EM
(3) Further tuning of the parameters of the priors such as e_{0} possible, e.g. using spearmint oder hyperopt
(3) It's fun to try ... especially if you are bored by all this Kalman filter stuff \mathcal{Y}

Cons

(MCMC sampling is slow by HEP standards:
clustering takes several seconds rather than a fraction of a second

- Fine-tuning may take a long time
(2) Hardly suitable for standard vertex finding

Pros

(3) Prior information on number of tracks per vertex and vertex spread is used
(3) This information can be extracted from runs with low luminosity, where vertex finding is easy
(3) Only the expected (average) number of vertices depends on the luminosity
(3ith a bit of fiddling we get the correct average number of vertices, in contrast to EM
(3) Further tuning of the parameters of the priors such as e_{0} possible, e.g. using spearmint oder hyperopt
(3) It's fun to try ... especially if you are bored by all this Kalman filter stuff \mathcal{Y}

Cons

(MCMC sampling is slow by HEP standards:
clustering takes several seconds rather than a fraction of a second
(2) Fine-tuning may take a long time
(3) Maybe the Kalman filter isn't that bad after all)

Possible other applications

- There are interesting problems with fewer observations and fewer clusters
- Ring finding in RICH detectors
- Model is circle (or ellipse) plus radial uncertainty
- Put prior distribution on radius
- Gives a ring-shaped prior
- Cluster finding in calorimeters
- Prior knowledge of the cluster shapes can be injected into the clustering
- Prior information would have to depend on the type and the location of the shower
- We would have to move to non-Gaussian models, possibly more complex samplers
- Merits some further investigation
(1) Introduction
(2) The Data
(3) Sparse model-based clustering
(4) EM algorithm
(5) Feasibility study

5 Results
(7) Discussion and outlook
(8) References

Model-based clustering

- Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821 (1993)
- One of the first papers on the subject

Asymptotic behaviour

- Rousseau, J., Mengersen, K.: Asymptotic behaviour of the posterior distribution in overfitted mixture models.
J. R. Stat. Soc. B 73(5), 689-710 (2011)
- Hardcore asymptotic statistics, not for the faint of heart

Sparse clustering

- Malsiner-Walli, G., Frühwirth-Schnatter, S., Grün, B.:

Model-based clustering based on sparse finite Gaussian mixtures. Statistics and Computing 26(1), 303-324 (2016)

- Basis of this talk, many more useful references

Everything you always wanted to know about mixture models (but were afraid to ask ...)

- Frühwirth-Schnatter, S.: Finite Mixture and Markov Switching Models, Springer, New York (2006)
- Expensive but comprehensive

Poster 1

Constrained fits with non-Gaussian distributions
Rudolf Frühwirth¹, Oliver Cencic²
1 Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
2 Institute of Water Quality, Resources and Waste Management, TU Wien, Vienna, Austria

- Shows how to impose linear or non-linear constraints on non-Gaussian data
- Independence sampler is used to draw from the posterior distribution

Poster 2

```
A new Riemann fit for circular tracks
Rudolf Frühwirth1, Are Strandlie}\mp@subsup{}{}{2
1 Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
2 Norwegian University of Science and Technology, Gjøvik, Norway
```

- Shows how to improve the resolution of the Riemann circle fit following a proposal by Chernov

The End
$\mathbf{W}^{\underline{\text { In }}}$

Thank you for your attention!

