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Abstract. This article presents the identification process of electrons based only on
calorimeter information. It is based on the usage of ring-shaped description for a region of
interest of the calorimeter which explores the shower shape propagation throughout the ATLAS
calorimeters. This information is fed into a multivariate discriminator, currently an artificial
neural network, responsible for hypothesis testing. The concept is evaluated for online selection
(trigger), used for reducing storage rate into viable levels while preserving collision events
containing desired signals. Preliminary results from Monte Carlo simulation data indicate that
the background rejection can be reduced by as much as 50 % over the current method used in
the High-Level Trigger, allowing for high-latency reconstruction algorithms such as tracking to
run at a later stage of the trigger.

1. Introduction
Succeeding the discovery of the Higgs boson in 2012 during Run 1, the LHC has started a new
data-taking period (Run 2). During the run start-up in 2015, it successfully increased the energy
in the center-of-mass of proton-proton collision physics to 13 TeV and shrank bunch spacing to
25 ns. Also, an increase of the luminosity is foreseen, targeting 1.6 × 1034cm−2s−1, which will
result in pile-up conditions of 44 mean inelastic interactions per bunch crossing. These changes
in experimental conditions bring a proper environment for possible new physics discoveries and
measurements.

ATLAS [1] is the largest LHC detector and was designed for a large spectrum of physics
studies. Many physics channels have electrons in their final states. For electron identification,
the calorimeter system plays a major role. In ATLAS, the calorimeter system comprises
both electromagnetic (EMCal) and hadronic (HCal) sections, where the latter envelopes the
electromagnetic counter-part. In the central region, the EMCal Barrel and both EMCal and
HCal End-Cap employ a Liquid Argon and absorber technology. The central HCal is based on
steel absorber with plastic scintillators.

These calorimeters consists of, for most of the η2 acceptance, three samplings along
longitudinal (depth) segmentation. Additionally, each sampling layer has its own lateral (η×φ)

1 Speaker.
2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre
of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring,
and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal
angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).



granularity, which may vary with η. The EMCal is complemented by a presampler (PS) within
|η| < 1.8.

The ATLAS trigger system [2] aims at providing online selection of promising bunch
crossing events into a viable output rate for recording and further offline processing. A set
of improvements and upgrades have been made to address the new circumstances in the Run 2
(cf. Ref. [3] for trigger related upgrades).

The trigger operates applying selection chains (referred to as chains for simplicity), in which
each selection level increases in latency and physics reconstruction depth. The first level (L1)
is the start of the selection chain and it is hardware-based in order to achieve a latency of less
than 2.5 µs meanwhile scaling down the readout rate to, at most, 100 kHz. Thereafter operates
the High-Level Trigger (HLT), a software-based selection with average target latency of 550 ms
and average output rate of 1 kHz. The physics selection menu consists of about ∼1000 chains
out of which about ∼100 aims at selecting electron and photons signatures (referred to as EM
particles).

2. Baseline Algorithm
The Egamma chain (Figure 1) is based on the Region-of-Interest (RoI) concept. The following
short description emphasizes the particle identification (ID) task, which consists of disentangling
the EM particles (signal) from collimated hadronic jets (background).
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Figure 1: Flow diagram for the
algorithm sequence of the Egamma
chain. Steps surrounded by blue
dashed lines only apply to electron
chains.

A sliding window algorithm is used to build the L1 RoI, which is used to select EM objects
by applying η-dependent ET threshold and hadronic isolation requirements.

In the sequence, already in the HLT, fast reconstruction is applied to provide early rate
reduction. Particularly for electron chains, the fast calorimeter and fast track reconstructions
are combined to provide an efficient electron pre-selection. Calorimeter driven pre-selection is
less resource intensive and, therefore, provides latency reduction. This reasoning is duplicated
to the precision step where offline-like algorithms are applied.

The current algorithm used by Egamma ID makes extensive use of calorimeter shower
shapes and widths, energy ratios, tracking quantities and track-cluster matching [4]. Offline
reconstructed distributions of these discriminating quantities over Run 2 data can be found in
Ref. [5].

Two standard selection variants are available. In cut-based ID, these quantities are
individually compared to the respective optimized threshold. The likelihood (LH) ID variant,
by contrast, uses a multivariate analysis technique, where a Näıve Bayes-like approach is applied
over the very quantities (cf. Ref. [4] for more details on these variations). The LH ID variant
is now the baseline method used on the precise calorimeter pre-selection and final selection for
electrons as part of the Run 2 updates. Nevertheless, the fast stage still uses selection-based ID
in which three, most discriminating, quantities are used by the calorimeter pre-selection.



3. Proposed Algorithm
The proposed algorithm (cf. Figure 2) aims at exploring the conic geometry of the shower shapes
by using the cells of the calorimeter to build energy quantities describing the amount of energy
available in each concentric ring around the cell of maximum energy deposition. This process
preserves the lateral and longitudinal information of the shower shape and, thus, the physics
interpretation, while reducing the amount of information with respect to using all cells.

Figure 2: Sketches to illustrate the Ringer algorithm. Left: An EM shower propagation
throughout the sampling layers of the calorimeters. Right: The calorimeter cells used to build
the rings description over the calorimeters layers. The cell of first (central) ring is displayed in
red, whereas the cells of the consecutive rings are alternated in black and white.

For the fast calorimeter pre-selection step, the Ringer RoI covers a region of the calorimeter,
centered in the L1 provided RoI, of 0.4×0.4 in the η×φ plane. The algorithm then starts on the
second EM sampling layer (EM2)3, where position (given in η×φ plane) of the cell with highest
ET on the Ringer RoI is taken as the center of the cascade interaction with the calorimeter.
The seed cell position is propagated to other calorimeter layers in order to define the axis of the
rings in that layer (ca,l). A ring Rn,l contains all cells in a calorimeter layer l which are n cells
from the axis. Formally,

Rn,l =

{
cn,l | n =

⌊
max

(
|ηi,l − ηa,l|

hη,l
,
|φi,l − φa,l|

hφ,l

)⌉
,∀ci,l ∈ ΘRoI,l

}
, (1)

where (analogous to φ when suitable): ηi,l and ηa,l are respectively the ci,l and ca,l cells position
in η; hη,l is the lth layer granularity in η; ΘRoI,l is the set of cells in the lth layer which are
within the Ringer RoI; l ∈ {PS,EM1,EM2,EM3,HAD1,HAD2,HAD3}; and n ∈ {0, . . . , Nl |
NPS = 7; NEM1 = 63; NEM2 = 7; NEM3 = 7; NHAD1 = 3; NHAD2 = 3; NHAD3 = 3}. If no cell
is available for a given ring, the correspondent ring quantity is set to 0.

Sum of energies of cells in the ring over the sum of the cells energies in all rings form a vector
of discriminating quantities. They are ordered outwards and from the innermost layer of the
calorimeter and provided to a multivariate technique.

These discriminating quantities are fed into neural network (NN) [6] which performs the
selection task. The architecture employed is a single hidden layer fully connected feedforward
network (MLP — Multilayer Perceptron). The hidden and output layer activation function is
set to tanh(·). The data is divided into two datasets: the training set (contains 60% of available
data), in which the NN weights are adjusted; and the test set (remaining 40%), used to verify that
NN specialization does not occur and to evaluate performance. The NN weights are initialized
by the Nguyen-Widrow [7] algorithm and optimized by applying the resilient back-propagation
algorithm [8]. In order to avoid convergence to local optima, a total of 100 initializations was
employed. The figure of merit used to evaluate performance was the threshold applied to the
NN output which maximizes the SP-index,

3 This convention is used for all sampling layers, thus HAD1 stands for the first hadronic layer, HAD2 the second
hadronic layer etc.



SP (%) =

√√
PD · (1− FR) ·

(
PD + (1− FR)

2

)
× 100%, (2)

where: PD is probability of detection; and FR is the background rejection or fake rate.
The thresholds were adjusted using the signal efficiency of the benchmark for regions of η and

ET. Statistical fluctuations from the dataset are estimated by employing the cross-validation
technique [6] with 50 sorts over 10 uniformly spread subsets of both signal and background
datasets. The number of neurons in the hidden layer is chosen by the application of both
cross-validation performance and generalization capability as criteria.

The operation points and fluctuations, respectively in terms of PD and FR, of the Ringer
algorithm for each η region, when ET < 30 GeV, are of: 96.9± 0.1 and 4.6± 0.2 (0 ≤ |η| < 0.8);
96.9± 0.1 and 4.6± 0.2 (0.8 ≤ |η| < 1.37); 90.7± 0.1 and 6.2± 1.2 (1.37 ≤ |η| < 1.54); 95.1± 0.1
and 10.9 ± 1.2 (1.54 ≤ |η| < 2.5). The region 1.37 ≤ |η| < 1.54 is the transition between the
barrel and end-cap calorimeters, where deterioration of the response of the detector occurs.

When 30 ≤ ET < 50, these values are the following: 99.0± 0.1 and 5.5± 0.7 (0 ≤ |η| < 0.8);
99.1± 0.1 and 6.3± 0.9 (0.8 ≤ |η| < 1.37); 95.9± 0.1 and 9.5± 2.1 (1.37 ≤ |η| < 1.54); 97.5± 0.1
and 11.2± 0.9 (1.54 ≤ |η| < 2.5).

Finally, for higher energies (ET ≥ 50 GeV): 99.4±0.1 and 2.0±0.4 (0 ≤ |η| < 0.8); 99.7±0.1
and 5.2 ± 1.0 (0.8 ≤ |η| < 1.37); 96.7 ± 0.1 and 2.7 ± 1.9 (1.37 ≤ |η| < 1.54); 98.4 ± 0.1 and
4.7± 0.9 (1.54 ≤ |η| < 2.5).

4. Results
The proposed algorithm, based upon ring-shaped calorimetry description, was compared to the
baseline algorithm executed in the fast calorimeter pre-selection step. The selection chain of
the trigger aims to pick events containing at least one electron with ET > 24 GeV. Prompt
electrons from Z → ee decays simulated using Monte Carlo were used as signal input and, for
the background, a dataset contained simulated hadronic jets with ET > 17 GeV. Both datasets
have pile-up emulation of 20 mean inelastic interactions per bunch crossing.

Only electrons reconstructed in the full offline processing were considered in the efficiency
computation. Analysis is done only for the fast calorimeter pre-selection decision. Thus, if a
candidate is discarded in advance by the L1 algorithm, it is simply not taken into consideration
and does not count for efficiency measurement. Likewise, the behavior of the remaining selection
of the electron chain was not evaluated.

Apart from meeting above conditions, the training data were selected as follow: signal data
are particles from Z → ee dataset considered as electrons by the most exigent criteria of the
offline LH ID; and background data are particles from hadronic jets dataset, where the residual
contamination of prompt electrons is removed by using simulation predictions.

The preliminary results in Figure 3 show that the proposed algorithm can operate with
similar performance over both the full η acceptance and over the range of the pile-up
conditions. Efficiency measurements use tag-and-probe4 (T&P) technique to allow comparison
with other studies which also consider collision data efficiencies. Notwithstanding, the efficiency
measurements demonstrate the capacity of a factor of 2 reduction in the background efficiency:
the signal efficiency of the ringer approach remains almost unchanged (97.6% → 97.7%) while
the fraction of background surviving selection changes from 12.7% → 5.3%. Therefore, these
results provide indication that the proposed algorithm is able to further improve Egamma HLT
chain by upgrading the fast calorimeter pre-selection step.

4 The tag-and-probe is a method to measure signal efficiency. Z → ee events with one electron passing default
trigger and second (probe) reconstructed electron by offline are selected and used to check if probe electron has
also passed trigger.
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Figure 3: Electron T&P efficiency over Z → ee simulation data for the trigger fast calorimeter
pre-selection. Left: as a function of the offline reconstructed electron candidates pseudorapidity
(η). Right: as a function of the number of pile-up events (µ). Taken from Ref. [9].

5. Conclusions
A selection method for electrons using ring-shaped calorimetry information was described. It
is an alternative for the fast calorimeter pre-selection stage of HLT trigger. Preliminary results
from simulation data demonstrate that the algorithm is able to provide similar signal efficiency
while improving background rejection by a factor of 2. Likewise, this gain also means a latency
reduction due to background removal in early stages of the trigger chain. Also, the execution
time of the proposed algorithm is equivalent to the baseline one. Hence, it may contribute
to further improve the Egamma High-Level Trigger for ATLAS experiment. Finally, a version
of the algorithm is being analysed on the offline reconstruction and it may also be applied to
photon identification which relies on calorimeter information only.
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