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Abstract. We review recent progress that we have achieved in evaluating the class of fully
massive vacuum integrals at five loops. After discussing topics that arise in classification,
evaluation and algorithmic codification of this specific set of Feynman integrals, we present
some selected new results for their expansions around 4 − 2ε dimensions.

1. Introduction
In high-energy physics experiments performed at current colliders such as the LHC, the flood
of precision data requires matching theoretical efforts, in order extract the underlying event’s
structure. This is particularly relevant for Run II, where important processes are plagued with
large QCD backgrounds, requiring high-precision theory calculations.

To this end, we will showcase a few techniques and results related to investigations of the
structure of higher-loop Feynman integrals which provide one of the basic building blocks of
high-precision perturbative calculations within elementary particle physics. We will discuss new
results on the current (five-)loop frontier, which constitute basic building blocks for important
quantities such as anomalous dimensions in gauge field theories such as QCD.

2. Classification
Let us consider fully massive 5-loop tadpoles, in Euclidean space-time, having the same mass m
in all propagators 1/(q2i +m2). Due to the absence of external legs there are no further scales,
such that all integrals scale trivially with the mass (which we can hence set to unity), such that
our problem corresponds to computing scale-free functions of the space-time dimension d only.
The corresponding 4-loop problem has been solved already more than a decade ago in 4d [1] as
well as 3d [2].

To fully define the 5-loop integral family, we need 15 propagators (lines), for which we choose

qi ∈ {k1, k2, k3, k4, k5, k13, k14, k15, k23, k24, k25, k35, k45, k124, k34} , (1)

where ka...bc = ka + · · · + kb − kc. Trivalent 5-loop graphs have 12 lines, and there are four
independent such sectors (one of them corresponding to the last diagram of Fig. 1). We label
different integral sectors by their binary representation (where a 1 at position j corresponds to a
line with momentum qj in the representation Eq. (1)), identify unique graphs, find all isometries
and corresponding momentum shifts, and choose the largest representative from each class.



Figure 1. Some examples of 5-loop master integrals with ’dots’ that we choose as elements of
our basis. Each solid line corresponds to a massive propagator with unit power, while each dot
represents an extra power. Note that we push all dots on a single line, which is the most natural
choice with respect to the difference equation setup for their evaluation.

Furthermore, using the freedom of normalization of the integral measure, we find it convenient
to divide out a factor of [1-loop tadpole]#loops from each integral, achieving a convention-
independent normalization of loop integrals. It is useful to recall that in 4d, the [1-loop
tadpole]∼ 1/ε, while it is finite in 3d.

To show some 5-loop numerology: of the 215 = 32768 possible sectors that can be constructed
from our list of momenta, 5151 do not correspond to a Feynman graph; 1941 of them are trivially
zero (in dimensional regularization, since they do not depend on one of the loop momenta), while
a further 3625 vanish non-trivially (since they can be shifted such that they become independent
of one of the integration momenta); 21962 sectors can be transformed (by linear momentum shifts
with unit Jacobian) to a larger representative, while 22 others never occur in a sane Feynman
diagram labelling (since they would require a shift with Jacobian 1/2); leaving us with 48 unique
irreducible 5-loop master sectors, plus 19 unique master sectors that correspond to products of
lower-loop integrals. To compare, at 1/2/3/4-loop there were 1/1/3/10 unique sectors (plus
0/1/2/6 factorized ones).

While each of the 48+19 sectors contains at least one master integral (which can be chosen
to be the ’corner integral’ having all lines with power one), a (small) IBP reduction reveals
that some sectors contain multiple master integrals. In particular, we need in 62 (+3 factorized
ones) additional masters with ’dots’, examples of which are shown in Fig. 1. Recall that at
1/2/3/4-loop there were only 0/0/0/3 masters with ’dots’ [3].

3. Evaluation
Generalizing our set of master integrals to carry a symbolic power x on one of their lines, we
can perform an IBP reduction on this modified set of masters and derive a hierarchical system
of difference equations for all of them. Symbolically,

I(x) ≡
∫

1

Dx
1D2...DN

,

R∑
j=0

pj(x)I(x+ j) = F (x) (2)

where the integer R is called order of the equation, the pj are rational functions (in two
variables, x and d), and the functions F on the right-hand sides contain integrals that are simpler
(according to the ordering prescription chosen). Boundary conditions for these equations are
simple, and can be derived by shrinking a line (i.e., at x = 0) or be related to lower-loop integrals
(i.e., expanding the integrand for x� 1).

Typically, one finally wants to extract the value for I(1). To this end, one needs to solve the
difference equation; this is possible explicitly for R = 1, while higher-order equations call for a
much more general setup [4]. Laporta’s recipe suggests to first attempt a general solution in
terms of factorial series, schematically:

I(x) = I0(x) +
R∑

j=1

Ij(x) , where Ij(x) = µxj

∞∑
s=0

aj(s)
Γ(x+ 1)

Γ(x+ 1 + s−Kj)
. (3)



The difference equation then determines the special solution I0, fixes the constants µj , Kj(d)
and implies a recurrence relation for the series coefficients aj(s) of the homogeneous solutions.
Second, one needs a boundary condition for fixing, say, aj(0); it is useful to observe decoupling at
large x, providing a particularly simple and automatable way to compute the necessary boundary
values:

I(x) =

∫
k1

g(k1)

(k21 + 1)x
⇒ I(x) ∼ (1)xx−d/2g(0) . (4)

This is then to be compared with the large-x behavior of the factorial series,
∑

j µ
x
jx

Kjaj(0).
Third, having all analytic ingredients for their solution in terms of infinite sums at hand, to

obtain actual results for the master integrals it is most useful to resort to a numeric treatment.
This involves truncating the sum in Eq. (3) at some smax, evaluating R consecutive values of
I(x) around some large x (where the factorial series converges well), and using the difference
equation Eq. (2) to push their argument down to the required integrals, such as I(1).

4. Implementation
The above method brings with it a number of advantages: it allows for a high level of automation;
works well with divergent integrals; does not rely on specific function classes; gives high-precision
results for arbitrary ε orders; allows for expansions around any dimension; provides simple but
highly non-trivial cross-checks by putting x on different lines.

However, we have found that, following the program proposed by Stefano Laporta [4], one
is faced with some problems and limitations when treating complex problems: the method is
of limited use for multi-scale integrals; the complexity of coefficients in high-order equations
can grow enormously; one typically obtains recurrence relations of high orders; in numerical
evaluation, one often faces instabilities of the factorial series solutions.

To alleviate these problems and make feasible the computation of our set of 5-loop massive
tadpoles, we had to considerably change the traditional setup. Much of our progress can be
attributed to a number of fixes done to the original proposal. To name a few key ingredients [5]:
we use coupled IBP equations, in order to tame the growth of complexity; we reduce (the orders
of) recurrence relations, essentially by re-using the linear solver developed for the system of
difference equations; our code predicts instability factors, in order to assign sufficient numerical
precision.

5. Results
In order to be specific, let us focus on results in d = 4 − 2ε here, recalling that we normalize
all our integrals with the corresponding power of the massive 1-loop tadpole. Given our high-
precision numerical results, one might wonder whether it is possible to determine some of the
coefficients in analytic form. To this end, we employ the integer-relation finder PSLQ [6] together
with an educated guess of a basis of irrationals (such as e.g. the well-classified set of multiple
zeta values and/or alternating Euler sums), to guess some of these coefficients. It helps to keep
the basis as compact as possible, so in order to absorb single powers of π as well as powers of
ln 3, we define

hn ≡
∞∑
k=0

Γ(k + 1/2)

Γ(k + 1)Γ(1/2)

(3/4)k

(2k + 1)n
= n+1Fn[{1/2, .., 1/2}︸ ︷︷ ︸

n+1

, {3/2, .., 3/2}︸ ︷︷ ︸
n

, 3/4] , (5)

Hn ≡ hn + h1 Coefficient
[
1− 3ε/2Γ(1− ε)

Γ2(1− ε/2)
+O(εn), ε, n− 1

]
, (6)

⇒ H1 = h1 =
2π

3
√

3
, H2 = h2 −

1

2
h1 ln 3 , H3 = h3 −

h1
8

(ln2 3 + 2ζ2) , etc. (7)



Figure 2. Sample integrals for which results are given in Eqs. (8), (12), (13-18).

The specific combinations Hn have actually been inspired by the 2-loop sunset (leftmost diagram
of Fig. 2), which can be written to all orders in terms of the Hn, the first few of which read1

I7.1.1 = −3

2
− 3

2
ε+ (9H2 − 3) ε2 + (9H2 − 18H3 − 6) ε3 + (18H2 − 18H3 + 36H4 − 12) ε4 . (8)

Furthermore, in order to absorb powers of ln 2, let us define as elements of the MZV basis

an ≡
∞∑
k=0

1

2k kn
= PolyLog[n, 1/2] = Lin(

1

2
) , (9)

An ≡ an + (−1)n
lnn 2

n!

(
1− n(n− 1)

2

ζ2

ln2 2

)
, (10)

⇒ A4 = a4 − ζ2
ln2 2

2 · 2!
+

ln4 2

4!
, A5 = a5 + ζ2

ln3 2

2 · 3!
− ln5 2

5!
, etc., (11)

such that e.g. the 3-loop mercedes-type integral (second diagram of Fig. 2) reads

I63.1.1 = +(0) ε0 + (0) ε1 + (−2ζ3) ε
2 + (−16A4 + 27H2

2 +
34ζ22

5
) ε3 + . . . . (12)

Our numerical approach has passed a number of cross-checks with flying colors: placing the
power x of each generalized master on topologically inequivalent lines, the values at x = 1
coincide; all known results up to 4-loop level [1, 7–9] have been reproduced or improved; all
factorized sectors perfectly agree with the respective products of lower-loop integrals; and the
few previously known 5-loop coefficients [10–12] have been reproduced. Let us finally show a
couple of new results on the five-loop level (for the rightmost 6 graphs shown in Fig. 2), using our
PSLQ fits for low ε-orders (the divergent ones), and truncating the constant term to 50 numerical
digits for readability:

I28686.1.1 = +(−3) ε0 + (−3

2
) ε1 + (

13

24
) ε2 + (−1267

1440
) ε3 + (−4193

3456
) ε4 +

+135.95072868792871461956492733702218574897992953584 ε5 + . . . , (13)

I28686.1.3 = +(0) ε0 + (
3

2
) ε1 + (−1

2
) ε2 + (−443

360
) ε3 + (

95

216
) ε4 +

−38.292059175062436961881799538284449799148385376441 ε5 + . . . , (14)

I30862.1.1 = +(−3

5
) ε0 + (−27

10
) ε1 + (−4ζ3

5
− 421

60
) ε2 + (−12ζ22

25
+

24ζ3
5

+
211

24
) ε3

+(
72ζ22
25
− 98ζ3 +

32ζ5
5

+
12959

48
) ε4 +

+1143.1838307558764599466030303839590323268318605888 ε5 + . . . , (15)

1 Regarding our notation for integral labels: Ia,b,c refers to the master integral with binary code a as explained
in Sec. 2, having propagators with unit powers, except line number b, which carries exponent c (or c− 1 ’dots’).



I30862.1.2 = +(
1

5
) ε0 + (

11

30
) ε1 + (− 1

30
) ε2 + (−12ζ3

5
− 9) ε3 + (−36ζ22

25
+

548ζ3
15

− 1229

15
) ε4 +

−102.42854342605587086319606311891941160276036031953 ε5 + . . . , (16)

I30231.1.1 = +(0) ε0 + (0) ε1 + (
3ζ3
5

) ε2 + (
9ζ22
25

+
21ζ3

5
+ 3ζ5) ε

3

+(−36H2ζ3 +
12ζ32

7
+

63ζ22
25
− 21ζ23

5
+ 27ζ3 −

24ζ5
5

) ε4 +

−531.32391547725635267943444561495368318398901378435 ε5 + . . . , (17)

I31420.1.1 = +(0) ε0 + (0) ε1 + (0) ε2 + (0) ε3 + (−36ζ23
5

) ε4 +

+167.81535305918474061962120601112466233675898298296 ε5 + . . . . (18)

6. Conclusions
We have studied the class of fully massive vacuum diagrams, which are essential building
blocks for a number of phenomenological applications such as QCD thermodynamics, anomalous
dimensions, or moments. A classification of all 5-loop integrals contained in this class reveals 48
independent sectors, with 48+62 master integrals (the latter having ’dots’).

For the evaluation, we have chosen to employ a hierarchical system of difference equations and
factorial series, amenable to automated numerical treatment. The setup required for deriving
the difference equations, the recursion relations for factorial series coefficients, as well as the
numerical solution has been implemented in the C++ code TIDE [5], essential parts of which are
parallelized. We use Fermat [13] for polynomial algebra in 2 variables, and manage to employ
a substantial fine-tuning of the Laporta approach, without which these results could not have
been derived on the computer hardware that we have at our disposal. At 5 loops, our code had
to deal with difference equations of up to order 20, and recurrence relations of up to order 28.

To date, we have numerical results for 44 of the 48 non-factorized 5-loop master-sectors
(including the ’dotted’ integrals of those sectors), with about 300 digits accuracy, for at least 10
ε-orders around d = 4−2ε and d = 3−2ε. These results include all divergent integrals, bringing
5-loop anomalous dimensions within reach (once the integral reduction has been performed).
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