
Automation of analytical calculations in high energy

physics with Redberry CAS

Stanislav Poslavsky
Institute for High Energy Physics NRC “Kurchatov Institute”, 142281 Protvino, Russia
Institute for Theoretical and Experimental Physics NRC “Kurchatov Institute”, 117218
Moscow, Russia

E-mail: stvlpos@mail.ru

Abstract. Here we present a brief report on recent developments of the Redberry computer
algebra system through two practical examples: derivation of Feynman rules from arbitrary
Lagrangians and computing NLO processes with heavy quarkonia.

1. Introduction
Redberry is a high performance computer algebra system [1, 2] which is specifically focused on
applications in high energy physics (HEP). The main distinguishing feature of Redberry is that
it considers all mathematical objects arising in HEP (scalars, spinors, matrices and in general
arbitrary tensors) in a uniform way. This means that e.g. indices of tensors are automatically
considered as patterns, all algebraic operations and functions are defined for objects with indices
and the user need not worry about such things as dummy index clashes, relabelling of indices in
substitutions etc. While Redberry comes with an extensive set of programming features which
makes it easily extendable, out of the box it provides a wide range of functions for performing
standard computations in HEP. Through the recent developments of the system, it is worth
to mention the improved d-dimensional Dirac algebra for dimensional regularization, features
for doing Fourier transform of the Lagrangian, a set of newly introduced transformations and
language features and major performance improvements.

In the following two sections we will briefly illustrate the new features of Redberry by two
practical examples: derivation of Feynman rules from the Lagrangian and computing next-to-
leading order (NLO) contributions to processes with heavy quarkonia.

2. Deriving Feynman rules
For the first illustration let’s consider an example which illustrates the derivation of Feynman
rules for the gravitational field with the following action:

L =
√
−g

(
− c

κ2
R− bR2 + aRabRab + γRφ2 + gab∂aφ∂bφ−m2φ2 + Lg.f.

)
,

where φ is a scalar matter field and the standard definition of the Riemann tensor Rλραβ =
∂αΓλρβ − ∂βΓλρα + ΓλασΓσρβ − ΓλβσΓσρα is implied. The first step towards the derivation of
Feynman rules is to perform a weak field expansion:

gab(x) = ηab + hab(x), gab(x) = ηab − hab(x) + hac(x)hcb(x) + . . . ,
√
−g = 1 + haa + . . . ,

where ηab is the Minkowski metric and hab(x) is considered as a quantum perturbation (assumed
to be also symmetric). With this definition, the gauge fixing term Lg.f. in the initial Lagrangian
is chosen as 1/(2f)(∂ah

ab(x)− ∂bhaa/2)2.
The following boilerplate code inputs all required definitions into Redberry:

1 setSymmetric 'h_ab[x_a]'
2 L = 'det * (Lg + Lf + Li + ...)'.t //total Lagrangian

3 //Lg - gravity, Lf - matter, Li - interaction

4 Lg = 'Lg = -c*R/k**2 - b*R**2 + a*R_ab*R_cd*m^ac[x_a]*m^bd[x_a]'.t
5 Lf = 'Lf = m^ab[x_a]*f~(1)_a[x_a]*f~(1)_b[x_a] - m**2*f[x_a]**2'.t
6 Li = 'Li = g*R*f[x_a]**2'.t
7 //Ri - Riemann, Chr - Christoffel, Ric - Ricci

8 Ri = 'R^a_bcd = G~(1)^{a}_{db c}[x_a] - ...'.t
9 Chr = ... ; Ric = ...; R = ...;

11 //WF - weak field, DT - sqrt(-g)

12 WF = 'm^ab[x_a] = g^ab - h^ab[x_a] + h^a_d[x_a]*h^db[x_a] + ...'.t
13 DT = 'det = 1 + h^a_a[x_a] + ...'.t

15 //subtitute all into the total Lagrangian

16 L <<= Lg & Lf & Li & R & Ric & Ri & Chr & WF & DT & ...

Here in the first line we specify that hab(x) is a symmetric field; this will be automatically taken
into account in all simplifications. The syntax '...'.t translates string expression into the
computer object. For the original metric field gab(x) the definition m_ab[x_a] is used while for
the Minkowski metric there is a built-in definition g_ab. Partial derivatives are specified using
special syntax G~(1)^a_dbc[x_a] which is treated as ∂cΓ

a
db(x). Finally, the join operator & used

in the last line allows to join several substitutions into a single function and expr<<=func is a
shorthand for the expr = func(expr).

At the next step we need to translate the Lagrangian into momentum space. At this point
we can select which terms to include into the expansion: we will keep terms with not higher
than cubic interaction (i.e. ∼ hhh, ∼ hhφ, ∼ hφφ).

17 $Degree = { expr -> Count(expr, 1, ['h_ab[x_a]', 'f[x_a]'].t, true) }

18 $SelectCubic = { expr ->

19 (expr.class == Product && $Degree(expr) > 3) ? 0.t : expr

20 }

22 //expand all brackets and drop higher interaction terms

23 L <<= ExpandAndEliminate[$SelectCubic]
24 //perform Fourier transform

25 L <<= LagrangeFourier

Here we define a new function $SelectCubic which takes expr and in the case if it is a product
containing more than three field multipliers it returns zero, otherwise it returns expr as is. The
transformation ExpandAndEliminate just expands out all brackets and simplifies contractions
with Minkowski metric. Additionally it takes an optional argument – a function (in our case
$SelectCubic) which will be applied at each intermediate step of the expand procedure; thus all
higher interactions will be dropped out at the earliest possible step, which reasonably speeds up
the calculation. After applying LagrangeFourier, the expression will look like

println L

� h_{ab}[k_a]*h_{cd}[-k_a]*k^a*k^c*g^bd...

+ h_{ab}[k_a]*f[p_a]*f[-p_a-k_a]*p^a*k^b... + ...

In order to find a propagator of e.g. a graviton, we need to select quadratic part of the
Lagrangian. This can be easily done using functional derivatives, e.g.:

P
(−1)
hh

abcd(p) =
δ

δhab(p)

δ

δhcd(−p)
L

26 $hh = L

27 $hh <<= Differentiate['h_ab[p_a]', 'h_cd[-p_a]']
28 $hh <<= 'h_ab[p_a] = 0'.t & 'f[p_a] = 0'.t
29 $hh <<= ApplyDiracDeltas & 'DiracDelta[0] = 1'.t
30 //bind inverse propagator

31 $iP = 'iP^abcd[p_a]'.eq $hh

Differentiate will take into account symmetries and function arguments, so e.g.:

δh_ab[k_a]

δh^mn[p_a]
=

1

2
*(g_am*g_bn + g_an*g_bm)*DiracDelta[k_a, p_a]

ApplyDiracDeltas just removes delta-functions in an appropriate way:

DiracDelta[k_a, p_a]*f[k_a]*... = f[p_a]*...

Having the inverse propagator, the propagator is determined from the equation:

P
(−1)
hh mnab P

mncd
hh =

(
δcaδ

d
b + δdaδ

c
b

)
/2 .

This tensor equation can be solved in Redberry using the Reduce function:

32 //specify symmetries of propagator

33 addSymmetries 'P_abcd[k_a]', [[0,1]].p, [[0,2], [1,3]].p

34 $eq = 'iP^abcd[k_a]*P_abpq[k_a] = (d^c_p*d^d_q + d^c_q*d^d_p)/2'.t
35 $eq <<= iP //substitute the inverse propagator in equation

37 $opts= [Transformations: 'd^n_n = 4'.t,
38 ExternalSolver: [Solver: 'Mathematica', Path: '/usr/bin/']]
39 $hhPropagator = Reduce([$eq], ['P_abcd[k_a]'], $opts)
40 println $hhPropagator

� P_{abcd}[k_{a}] = 2*(-c+(-6*k**2*b+2*a*k**2)*k_{g}*k^{g}...

Our unknown variable in the equation for the propagator is P_abcd[k_a]. First we should
specify symmetries which this unknown variable should satisfy. Then we call Reduce with the
list of equations, list of unknown variables and additional options. It will make an ansatz for
the unknown variable and reduce the equations to the system of scalar equations. Additional
options specify that the produced scalar system should be solved with Mathematica (without
this Reduce will return just a system of scalar equations). Note that the spacetime dimension is
controlled everywhere just by substituting d^n_n = 4. The graviton propagator finally reads:

Pabcd(k) =
aκ2k2 + c− 2κ2f2

2f2k4(aκ2k2 + c)
(gackbkd + gbckakd + gbdkakc + gadkbkc)

+
(gacgbd + gadgbc)

(aκ2k2 + c)κ2k2
+

κ2(−κ2ak2 + c+ 4bκ2k2)gabgcd
(κ2ak2 + c)(2κ2(a− 3b)k2 − c)k2

+
2κ4(a− 2b)

(
gcdkakb + gabkckd + 2kakbkckd/k

2
)

(aκ2k2 + c)(2κ2(a− 3b)k2 − c)k2

All other Feynman rules can be found in the same way. For example, take the hφφ vertex:

41 $hff = L

42 $hff <<= Differentiate['h_ab[k_a]', 'f[p_a]', 'f[q_a]']
43 $hff <<= 'h_ab[p_a] = 0'.t & 'f[p_a] = 0'.t
44 $hff <<= ApplyDiracDeltas

46 //bind vertex

47 $v3 = 'V3^ab[p_a, q_a, k_a]'.eq $hff
48 println $v3

� V3^ab[p_a, q_a, k_a] = (4*g-1)*p^{l}*q_{l}*g^{ab}-m**2...

which corresponds to

V ab(p, q) =

αβ
k

q

= −2g
(
qaqb + papb

)
+ (1− 2g)

(
qapb + qbpa

)
+

+
(

2g(q2 + p2) + (4g − 1)qlp
l −m2

)
gab

3. NLO processes with heavy quarkonia
Let us now turn to applications in QCD and consider the process e+e− → γ∗ → J/ψ+ ηc at the
one-loop level. In total, there are 210 Feynman diagrams which could be generated using e.g.
FeynArts1 [3]. Assuming that we already have the diagrams in some format, let’s focus on the
part which can be easily done with Redberry.

The basic boilerplate setup for QCD in Redberry looks like:

1 setAntiSymmetric 'e_abcd', 'f_ABC'
2 setSymmetric 'd_ABC'
3 defineMatrices 'T_A', Matrix2.matrix, //unitary matrices

4 'G_a', 'G5', Matrix1.matrix, //Dirac matrices

5 'v[p_a]', Matrix1.vector, Matrix2.vector, //final-state quark

6 'ubar[p_a]', Matrix1.covector, Matrix2.covector, //final-state antiquark

7 ...

The first lines just sets up symmetries for the Levi-Civita tensor and the SU(N) structure
constants. Next, we specify rules for non-commuting objects: spinors, SU(N) and Dirac matrices.
The definition Matrix1.matrix tells nothing but that G_a has two additional (invisible) matrix
indices etc. In this sense e.g. the line ū(p)TAγav(k) will be treated internally as

ubar[p_a]*T_A*G_a*v[k_a] -> ubar_{a'A'}[p_a]*T^{A'}_{B'A}*G^{a'}_{b'a}*v^{b'B'}[k_a].

The particular setup for our process of interest is then:

8 $proj = 'v[pPsi2_a]*ubar[pPsi1_a] =

9 (G^a*pPsi_a/2-MC)*G_m*epsPsi^m*(G^b*pPsi_b/2+MC)'.t & ...//onia projectors

11 $scalars = setMandelstam([k1_a: 0, k2_a: 0, pPsi_a: '2*MC', pEta_a: '2*MC']]
12 $qScalars = 'q_a*pPsi^a = qp'.t & 'q_a*pEta^a = qe'.t & 'q_a*q^a = qq'.t

14 $PaVe = PassarinoVeltman([2, 1], 'q_a', ['pPsi_a', 'pEta_a'])
15 $dSimplify = DiracSimplify[[Dimension: 'd', TraceOfOne: 4]]

16 $dTrace = DiracTrace[[Dimension: 'd', TraceOfOne: 4]]

1 The details of the conversion from FeynArts can be found on the Redberry website.

http://redberry.cc

In the first line the projectors v(p1)ū(p2) = (P̂ /2−mc) Ŝ (P̂ /2 +mc) of charmed quarks on the

quantum numbers of the final quarkonia are specified, where Ŝ = γ5 for ηc and Ŝ = ε̂ψ for the
J/ψ and P is the total momentum of the quarkonia. Next, the function setMandelstam generates
a list of replacements for the scalar products of momenta. The variable $qScalars holds auxiliary
replacements of dot products with loop momenta, while PassarinoVeltman(i, in, ext) returns
a list of replacements for loop momenta in and list of external momenta ext, e.g.:

println PassarinoVeltman(2, 'q_a', ['pPsi_a', 'pEta_a'])

� q_a*q_b = (...)*pPsi_a*pEta_b + (...)*g_ab + ...

Finally, DiracSimplify and DiracTrace are used with additional options in order to perform all
algebra in dimensional regularization (Larin’s scheme [4] for γ5 is implied automatically).

After these preparations, the main calculation loop can be the following:

17 $amps = __CallFeynArts__().t //import diagrams from FeynArts

18 $answNLO = 0.t

19 for($amp in $amps){
20 $amp <<= $proj //apply quarkonia projectors

21 $amp <<= UnitaryTrace & UnitarySimplify // SU(N) algebra

22 $amp <<= $qScalars & $PaVe & ExpandAndEliminate // PaVe reduction

23 $amp <<= $dSimplify & $dTrace & LeviCivitaSimplify // dimensional regularization

24 $answNLO += Factor($amp) //sum amplitudes

25 }

We just iterate through all diagrams and sequentially do: substitutions of projectors, color
algebra, Passarino-Veltman reduction and dimensional regularization. After all, the amplitudes
$answNLO will be in the form:

(...) * e_{abcd}*pPsi^b*pEta^c*epsPsi^d + (scalar) * (tensor) + ...,

where all same Lorentz structures will be collected automatically and each scalar prefactor is a
sum of scalar loop integrals that should be either directly calculated numerically or reduced to
a set of master integrals. Presently, the latter step is deferred to external tools. In the case of
the above example, it is easy to export processed amplitudes in e.g. Mathematica format with

new File('amps_nlo.m') << $answNLO.toString(OutputFormat.WolframMathematica)

and reduce the scalar integrals with e.g. the $Apart package [5] and FIRE [6]. The whole reduction
of the above 210 diagrams with Redberry takes just about two minutes on a standard laptop.

4. Conclusions
In this paper we have illustrated some new important features of Redberry system, which
facilitates automatization of calculations of many types required in HEP. More examples with
many details can be found on the Redberry website http://redberry.cc [1].

Acknowledgments
I would like to thank Andrei Kataev and Andrei Onishchenko for stimulating discussions. The
work was supported by the RFBR grant #16-32-60017 and by the FAIR-Russia Research Center.

References
[1] Bolotin D A and Poslavsky S V 2013 (Preprint 1302.1219) URL http://redberry.cc

[2] Poslavsky S and Bolotin D 2015 J. Phys. Conf. Ser. 608 012060
[3] Hahn T 2001 Comput. Phys. Commun. 140 418–431 (Preprint hep-ph/0012260)
[4] Larin S A 1993 Phys. Lett. B303 113–118 (Preprint hep-ph/9302240)
[5] Feng F 2012 Comput. Phys. Commun. 183 2158–2164 (Preprint 1204.2314)
[6] Smirnov A V 2008 JHEP 10 107 (Preprint 0807.3243)

http://redberry.cc
1302.1219
http://redberry.cc
hep-ph/0012260
hep-ph/9302240
1204.2314
0807.3243

