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Abstract. Likelihood ratio tests are a key tool in many fields of science. In order to evaluate
the likelihood ratio the likelihood function is needed. However, it is common in fields such
as High Energy Physics to have complex simulations that describe the distribution while not
having a description of the likelihood that can be directly evaluated. In this setting it is
impossible or computationally expensive to evaluate the likelihood. It is, however, possible
to construct an equivalent version of the likelihood ratio that can be evaluated by using
discriminative classifiers. We show how this can be used to approximate the likelihood ratio
when the underlying distribution is a weighted sum of probability distributions (e.g. signal
plus background model). We demonstrate how the results can be considerably improved by
decomposing the ratio and use a set of classifiers in a pairwise manner on the components of
the mixture model and how this can be used to estimate the unknown coefficients of the model,
such as the signal contribution.

1. Introduction
In High Energy Physics (HEP) and many other fields, hypothesis testing is a key tool when
reporting results from an experiment. Likelihood ratio tests are the main technique for
hypothesis testing and they are the most powerful statistic for simple hypothesis testing. For
composite hypothesis testing the profile or generalized likelihood ratio test is commonly used.
When computing the likelihood ratio the data distribution p(x|θ) must be evaluated, where
θ are parameters of the probability distribution. However, it is common in HEP to have
physics simulations that allow to sample high dimensional vectors from the distribution p(x|θ)
while not having a description that can be directly evaluated. Commonly it is impossible or
computationally expensive to compute the likelihood ratio in this setting.

A common use of likelihood ratios in HEP is signal process identification. In this task the
hypothesis testing procedure is used to evaluate the signal process significance by contrasting the
background-only (null) hypothesis versus the signal plus background (alternative) hypothesis.
In this setting, the underlying distribution can be seen as a signal and background mixture
model defined as

p(x |µ, ν) = µps(x | ν) + (1− µ) pb(x | ν), (1)



where px(x | ν) correspond to the signal distribution and pb(x | ν) is the background distribution,
both parametrized by nuisance parameters ν which describe uncertainties in the underlying
physics predictions or response of measurement devices. The parameter µ is the mixture
coefficient corresponding to the signal component of the distribution. In this case the generalized
likelihood ratio test takes the form of

Λ(D) =

n∏
e=1

p(xe|µ = 0, ˆ̂ν)

p(xe|µ̂, ν̂)
, (2)

where D is a data set of i.i.d observations xe, ˆ̂ν is the conditional maximum likelihood estimator
for ν under the null hypothesis θ0 (µ = 0) and ν̂, µ̂ are the maximum likelihood estimators for
ν and µ. This approach has been used extensively to assert the discovery of new particles in
HEP [1], such as in the discovery of the Higgs boson [2, 3].

As previously mentioned, the original distributions for signal and background can only
be approximated by simulations. Most of the likelihood ratio tests at the LHC are made
on the distribution of a single feature that discriminates between signal and background
observations. For this, the simulated data is used together with interpolations algorithms in order
to approximate the parametrized model and then use it in the hypothesis testing procedure [4].

Recently, it has been shown that a discriminative classifier trained to classify between signal
and background can be used to obtain an equivalent likelihood ratio test (see eq. 2.9 of [5]).
Given a classifier trained to learn a monotonic function of the per event ratio p(xe|θ0)/p(xe|θ1), it
can be proved that the likelihood ratio test on the conditional distributions of the classifier score
is equivalent to the original likelihood ratio. Moreover, many of the commonly used classifiers
learn to approximate some monotonic function of the per-event ratio.

In this work we show how these results can be used to approximate the likelihood ratio when
the underlying distribution is a weighted sum of probability distributions (mixture model). We
also show that by training a set of classifiers in a pairwise manner on the components of the
mixture model it is possible to improve the results of the approximation.

2. Decomposed likelihood ratio test for mixture models
A generalized version of the signal and background mixture model of eq. (1) for several
components is

p(x|θ) =

k∑
i=1

wi(θ)pi(x|θ), (3)

where wi(θ) are the mixture coefficients for each one of the components parametrized by θ. In [5]
it is shown that the likelihood ratio between two mixture models

p(x|θ0)
p(x|θ1)

=

∑k
i=1wi(θ0)pi(x|θ0)∑k′

j=1wj(θ1)pj(x|θ1)
, (4)

is equal to the composition of pairwise ratios for each one of the components which, in turn, is
equivalent to the composition of ratios on the score distribution of pairwise trained classifiers

p(x|θ0)
p(x|θ1)

=
k∑
i=1

 k′∑
j=1

wj(θ1)

wi(θ0)

pj(x|θ1)
pi(x|θ0)

−1

=
k∑
i=1

 k′∑
j=1

wj(θ1)

wi(θ0)

pj(si,j(x; θ0, θ1)|θ1)
pi(si,j(x; θ0, θ1)|θ0)

−1

. (5)

In the case that the only free parameters of the mixture model are the coefficients wi(θ), then each
distribution pi(si,j(x; θ0, θ1)|θ) is independent of θ and can be pre-computed and used afterwards



in the evaluation of the likelihood ratio. Moreover, when numerator and denominator correspond
to the same distribution, the values can be directed replaced by unity, avoiding unnecessary
computations. Also, for a two-class classifier the values of sj,i(x; θ0, θ1) for one of the classes
can be replaced by the values of si,j(x; θ0, θ1) for the opposing class, in which case it is only
necessary to train the classifiers for i < j. This saves a lot of computation time and reduces
the variance that is introduced by differences between si,j(x; θ0, θ1) and sj,i(x; θ0, θ1) due to
imperfect training. In the case of background-only versus signal plus background hypotheses it
is common that the signal coefficient wj(θ1) is a very small number compared to the background
coefficients. In these conditions a classifier trained on data from the full mixture model will have
difficulty identifying the signal since most of the useful discriminative data will be located in a
small region of the feature space while the decomposed model will not face these issues.

It is possible to estimate the signal and background coefficients by using the maximum
likelihood method on the ratios, as follows

θ̂ = arg max
θ

N∏
e=1

p(xe|θ)
p(xe|θ1)

= arg max
θ

N∏
e=1

p(s(xe; θ, θ1)|θ)
p(s(xe; θ, θ1)|θ1)

, (6)

for some fixed value of θ1.
The complete algorithm to approximate the likelihood ratio using pairwise trained classifiers

can be separated into three independent stages: classifier training, score distribution estimation,
and computation of the composition formula. Since these steps are independent, each one can be
solved as a different problem. In the first step any classifier satisfying the monotonic requirement
can be used. In the second stage the probability distribution of the score on data from θ0 or θ1
can be approximated using any univariate density estimation technique such as histograms or
kernel density estimation [6, 7].

3. Experiments
In this section two examples of how the method works on data generated from known
distributions will be presented. In both cases we study the results of using the decomposition
formula to compute the ratios. Then, we compare the results to the exact (in this case known)
ratios and to the density ratios obtained by training a classifier on data from the full mixture
model. All studies were conducted using a simple multilayer perceptron model. That classifier
shows a good tradeoff between quality of the ratios and simplicity of the model (good results were
also obtained using boosted decision trees, logistic regression and support vector machines). The
probability models were implemented with the RooFit [6] probabilistic programming language
and the classifiers were implemented using Theano [9] (a framework to build neural network
models) and scikit-learn [10] (a general framework for machine learning in python). The
code is available for replication of the results at [11].

First, we present a simple case in which each component is a univariate distribution. We
consider a mixture model consisting of three distributions, where p0(x) and p1(x) are univariate
Gaussian distributions while p2(x) is a decaying exponential. The mixture models are composed
by the weighted sum of those distributions where p0(x) correspond to the signal component.
The mixture models with coefficients W (θ0) = [0., 0.3, 0.7] for the background-only hypothesis
and W (θ1) = [0.1, 0.27, 0.63] for the background plus signal hypothesis are shown in Figure 1a.

Three neural networks were trained on 200000 examples sampled from the pairs of single
distributions and one on examples sampled from the full models (it is important to use the
same amount of training data in order to allow a fair comparison). Each neural network
consists of 1 hidden layer of 4 units and stochastic gradient descent with a learning rate of
0.01 and no regularization was used in training (the networks were implemented with Theano).
The distribution of the score is estimated using histograms on a different dataset with 100000
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Figure 1: (1a) shows the mixture model distributions. (1b) and (1c) show a density ratio
comparison for different values of the signal weight.
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(b) Signal weight of 0.05.
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Figure 2: Background rejection versus signal efficiency curve comparison for different values of
the signal weight.

samples (the number of bins were carefully chosen in order to allow a good approximation while
minimizing Poisson fluctuations). The composed ratio using eq. (5), the ratio estimated using a
classifier trained on data from the full model, and the exact density ratio are shown in Figure 1b
and Figure 1c for different values of the signal contribution (0.1 and 0.05) while keeping the
ratio between the backgrounds contributions fixed.

It can be seen that the ratios obtained by the composition method are better (closer to the
exact ratios) than those obtained using a model trained on data from the full mixture models
and this become clearer when the signal contribution is smaller.

Next, the same experiments are repeated but now considering a much harder mixture
model consisting of three distributions, each one composed of the sum of three 10-dimensional
multivariate Gaussian distributions. Again, we used neural networks with 1 hidden layer with
40 units, a learning rate of 0.01 and a `2 regularization of 0.0001 in training. To evaluate
the approximated ratios the background rejection versus signal efficiency curves are used,
employing the density ratio as discriminative variable. The values for each one of the three
cases (decomposed, full and exact) are shown in Figure 2, for a signal contribution of 0.1, 0.05
and 0.01.

The values of each one of the coefficients of the mixture model can be estimated by using
the method of maximum likelihood as explained in Section 2. In Figure 3a the contour plot
for the log-likelihood ratio obtained using the composed density ratios and the exact density
ratios are shown. Histograms of the maximum likelihood estimators (MLEs) for approximated
and exact ratios and for the signal coefficient and one of the background coefficients on 200
different pseudo-datasets of size 1000 are shown in Figure 3b and Figure 3c. It is seen from
these histograms that the estimations are unbiased.
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Figure 3: (3a) shows the values of −2 log Λ(D) given the signal and one of the bkg. weights.
(3b) and (3c) show histograms for maximum likelihood estimated values for the signal and
background weights respectively.

4. Conclusions
We have shown the power of using discriminative classifiers in order to approximate the likelihood
ratio. In the case of mixture models we have proved that the decomposed version of the ratio
can greatly improve the quality of the results. Using the same method we demonstrated how
to estimate the unknown parameters of the model. Initial experiments have been conducted on
simulated data from different Higgs production mechanisms, obtaining encouraging results. An
open source Python package was created to facilitate the usage of this method [12].
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