
FeynCalc 9

Vladyslav Shtabovenko

Technische Universität München, Physik-Department T30f, James-Franck-Str. 1, 85747
Garching, Germany

E-mail: v.shtabovenko@tum.de

Abstract. We report on a new version of FeynCalc, a well-known Mathematica package
for symbolic computations in quantum field theory and provide some explicit examples for using
the software in different types of calculations.

1. Introduction
Modern perturbative calculations in quantum field theory (QFT) often heavily rely on different
software tools that are used to automatize both the algebraic and the numerical stages of the
evaluation.

In the last decades, much effort was invested to develop packages (e.g. FormCalc [1], GoSam
[2], GRACE [3]) that are able to perform all the steps needed to arrive to physical observables
(e.g. decay rates or cross-sections) in a highly automatized way. The level of the automation in
such packages is so advanced, that in many cases the user just has to specify the incoming and
outgoing particles, while the underlying code will take care of everything else and produce final
results.

A complementary approach is represented by tools (e.g. HEPMath [4], Package-X [5])
that do not attempt to automatize everything bur rather provide a collection of easy to use
instruments for accomplishing most common tasks in QFT calculations, like contractions of
Lorentz indices, calculation of Dirac traces or tensor decomposition of loop integrals. Such
semi-automatic packages give the user much flexibility but also require him or her to carefully
handle every step of the calculation. This bears a strong resemblance to calculations done by
pen and paper, with the difference that one can proceed in a much faster way .

While both philosophies have their supporters in the high energy physics community, one
should of course understand that they are not competing with each other but rather cover different
use cases. On the one hand, many tree-level and 1-loop calculations in Standard Model and its
popular (e.g. supersymmetric) extensions can be nowadays carried out in a highly automatic
fashion, since the essential steps of these calculations are sufficiently well understood. It is
therefore natural to use suitable packages like FormCalc or GoSam to study such processes.

On the other hand, multi-loop calculations, determination of matching coefficients in effective
field theories or evaluation of Feynman diagrams in non-relativistic QFTs are good examples
for tasks that are too complex or non-standard to be automatized in full generality. Although
for such projects people often prefer to write their own code from scratch (e.g. implemented in
FORM [6] or Mathematica), it can also be useful to use different instruments provided by
publicly available semi-automatic packages instead of or in addition to the private codes.

FeynCalc belongs to the oldest semi-automatic packages that are still actively developed
and used in research. The first version of the program was published almost 25 years ago [7]
and followed the idea to provide a flexible and easy to use Mathematica package for symbolic
calculations and for the evaluation of Feynman diagrams in QFT at tree-level and at 1-loop. In
this context, ”symbolic calculations” means that FeynCalc can deal not only with Feynman

diagrams but also standalone QFT expressions like
∫ dDq

(2π)D
lµlν

l2−m2 or Tr(γµγνγργσ). The users

of FeynCalc are therefore not forced to follow a particular workflow (e.g. first enter the
Lagrangian, then generate Feynman diagrams and finally evaluate them) but are free to use the
software as some sort of ”calculator” for QFT expressions. This design philosophy has been
preserved over the years and made FeynCalc a valuable tool for many QFT practitioners.

This note is organized in the following way. In Sec. 2 we briefly describe the most interesting
new features of FeynCalc 9 and provide some examples for purposes of illustration. Sec. 3
shows the calculation of the gluon self-energy at 1-loop in QCD, where the final result will be
presented in terms of the Passarino-Veltman scalar functions A0 and B0. In Sec. 4 we summarize
and mention main directions for the future development of FeynCalc.

2. New features in FeynCalc 9
FeynCalc 9 was released in January 2016 [8]. While the development of the program between
2001 and 2014 was mostly limited to providing fixes for the discovered bugs, this version also
introduces some new features that are mostly related to the evaluation of 1-loop and multi-loop
integrals. Version 9 requires at least Mathematica 8 and can be installed by just evaluating

Import[”https://raw.githubusercontent .com/FeynCalc/feyncalc/master/install .m”]
InstallFeynCalc []

in a Mathematica notebook. The automatic installer also handles the setup of FeynArts
[9], a Mathematica package that can generate Feynman diagrams, which can be then (after
some conversion) evaluated with FeynCalc. An example for the conversion from FeynArts to
FeynCalc will be described in Sec. 3.

Tensor decomposition of 1-loop integrals using the TID routine has received a lot of
improvements in FeynCalc 9 and can in principle handle 1-loop tensor integrals of arbitrary
rank and multiplicity. Provided that there are no vanishing Gram determinants, one can choose
(via the option UsePaVeBasis) between the full decomposition into Passarino-Veltman scalar
functions

In[1]:= int = FCI[GAD[µ].(m + GSD[q]).GAD[µ] FAD[{q, m},{q−p}]]

Out[1]:= γµ.(m+γ·q).γµ

(q2−m2).(q−p)2

In[2]:= TID[int, q]//ToPaVe[#, q]&

Out[2]=
iπ2(D−2)A0(m2)γ·p

2p2
− iπ

2B0(p2,0,m2)(Dm2γ·p−2Dmp2+Dp2γ·p−2m2γ·p−2p2γ·p)
2p2

and the decomposition into Passarino-Veltman coefficient functions

In[3]:= TID[int, q, UsePaVeBasis −> True, PaVeAutoReduce −> False] //
ToPaVe[#, q] &

Out[3]:= iπ2B0

(
p2, 0,m2

)
(Dm−Dγ · p+ 2γ · p)− iπ2(D − 2)γ · pB1

(
p2, 0,m2

)
Zero Gram determinants are automatically recognized and force the algorithm to avoid the full
decomposition

In[4]:= FCClearScalarProducts[]
SPD[p1, p2] = x;
SPD[p1, p1] = x;
SPD[p2, p2] = x;
FCI[FVD[l, µ] FVD[l, ν] FVD[l, ρ] FAD[{l, m0}, {l + p1, m1}, {l + p2, m2}]]

Out[4]:= lµlν lρ

(l2−m02).((l+p1)2−m12).((l+p2)2−m22)

In[5]:= TID[(1/(I Piˆ 2)) %, l]

Out[6]:= (p1ρgµν + p1νgµρ + p1µgνρ)C001

(
x, 0, x,m02,m12,m22

)
+ (p2ρgµν + p2νgµρ + p2µgνρ)C002

(
x, 0, x,m02,m12,m22

)
+p1µp1νp1ρC111

(
x, 0, x,m02,m12,m22

)
+ (p1νp1ρp2µ + p1µp1ρp2ν + p1µp1νp2ρ)C112

(
x, 0, x,m02,m12,m22

)
+ (p1ρp2µp2ν + p1νp2µp2ρ + p1µp2νp2ρ)C122

(
x, 0, x,m02,m12,m22

)
+p2µp2νp2ρC222

(
x, 0, x,m02,m12,m22

)
where we multiplied the result by 1

iπ2 to cancel the normalization factor that appears in the
conversion of loop integrals to Passarino-Veltman functions.

With the new function FCMultiLoopTID it is now also possible to compute tensor
decompositions of multi-loop integrals, although in this case a special treatment of integrals with
zero Gram determinants is not available yet.

In[7]:= FCI[FVD[q1, µ] FVD[q2, ν] FAD[q1, q2, {q1 − p1}, {q2 − p1}, {q1 − q2}]]

Out[7]:= q1µq2ν

q12.q22.(q1−p1)2.(q2−p1)2.(q1−q2)2

In[8]:= FCMultiLoopTID[%, {q1, q2}]

Out[8]:= Dp1µp1ν−p12gµν

4(D−1)q22.q12.(q2−p1)2.(q1−q2)2.(q1−p1)2
−

p12gµν−p1µp1ν

2(D−1)p12q22.q12.(q2−p1)2.(q1−p1)2
+ p12gµν−p1µp1ν

(D−1)p12q22.q12.(q1−q2)2.(q1−p1)2
− Dp1µp1ν−p12gµν

2(D−1)p14q12.(q2−p1)2.(q1−q2)2

Simplification of scalar loop integrals with linearly dependent propagators is another feature
of FeynCalc that was greatly improved in the version 9 by adopting the partial fractioning
algorithm of F. Feng [10]. The corresponding function ApartFF is not only faster and more
efficient than the old ScalarProductCancel (which is now considered legacy), but is also
capable to handle multi-loop integrals

In[9]:= FCI[SPD[p, q1] ˆ2 SPD[p, q2] FAD[{q1, m}, {q2, m}, q1 − p, q2 − p, q1 − q2]]

Out[9]:= (p·q2)(p·q1)2

(q12−m2).(q22−m2).(q1−p)2.(q2−p)2.(q1−q2)2

In[10]:= ApartFF[%,{q1,q2}]

Out[10]:=
(m2+p2)3

8(q12−m2).(q22−m2).(q2−p)2.(q1−q2)2.(q1−p)2
− (m2+p2)2

4(q12−m2).(q22−m2).(q1−q2)2.(q1−p)2

+
(m2+p2)2

4q22.q12.((q1−p)2−m2).(q1−q2)2
+

(m2+p2)(p2−p·q1)
4q22.q12.(q1−q2)2.((q2−p)2−m2)

− (m2+p2)(p·q1)
4(q12−m2).(q22−m2).(q2−p)2.(q1−q2)2

− p·q1
4(q22−m2).(q1−q2)2.(q1−p)2

− m2+p·q1+p2

4(q12−m2).(q2−p)2.(q1−q2)2

+ m2+2(p·q1)+p2

8(q12−m2).(q22−m2).(q2−q1)2

A more detailed description of these and other new and improved functions can be found in [8].

3. Gluon self-enery at 1-loop in QCD
To make some connection to more realistic examples, let us look at the 1-loop gluon self-energy
in QCD. While this is, of course, a standard textbook calculation that can be done by pen and
paper with comparably little effort, it shows how FeynCalc can be used to evaluate Feynman
diagrams generated by FeynArts.

The first step is always to load FeynCalc with the global option $LoadFeynArts set to True,
which ensures that the patched copy of FeynArts, that usually resides inside the FeynCalc
installation, will we loaded in a proper way. It is also convenient to set the option $FAVerbose

to 0, which prevents FeynArts from displaying too much extra information.

In[1]:= $LoadFeynArts = True;
<< FeynCalc‘
$FAVerbose = 0;

Then we can use FeynArts’ functions CreateToplogies and InsertFields 1 to generate
the diagrams that we want to evaluate.

In[2]:= diags = InsertFields [CreateTopologies[1, 1 −> 1 , ExcludeTopologies −> {Tadpoles}],
{V[5]} −> {V[5]}, InsertionLevel −> {Classes}, Model −> ”SMQCD”,
ExcludeParticles −> {S[], V[2 | 3], U[1 | 2 | 3 | 4], F [4]}];

With the following code

In[3]:= amps = FCFAConvert[CreateFeynAmp[diags, Truncated −> True, PreFactor −> −1],
IncomingMomenta −> {p}, OutgoingMomenta −> {p}, LoopMomenta −> {q},
DropSumOver −> True, ChangeDimension −> D, UndoChiralSplittings −> True,

LorentzIndexNames −> {µ, ν}] /. {MQU[Index[Generation, 3]] −> m};

the amplitudes generated by FeynArts are converted into a valid FeynCalc input. Here the
output of the standard FeynArts function CreateFeynAmp is passed to FCFAConvert, a new
FeynCalc routine that handles the conversion according to the options submitted by the user.
The resulting expression amps is a list with four entries that correspond to the four diagrams
displayed in Fig. 1, where for convenience the FeynArts expression for the up-type quark mass
MQU[Index[Generation, 3]] was replaced by m.

g g

g

g

g

uk

uk

g

g

ug

ug

g

g

g

g

Figure 1. 1-loop contributions to the gluon self-energy in QCD

These four diagrams can be evaluated with

In[4]:= amps2 = TID[#, q] & /@ SUNSimplify /@ Contract /@ amps;

where we apply the FeynCalc functions Contract (contraction of Lorentz indices), SUNSimplify
(simplification of the SU(N) algebra) and TID (tensor reduction of 1-loop integrals) to each
amplitude. We known that the first amplitude in Fig. 1 vanishes in dimensional regularization,
as it is proportional to a scaleless loop integral. FeynCalc confirms that this is indeed the case

In[5]:= amps2[[1]]
Out[5]:= 0

1 The syntax for these and other FeynArts functions can be found in the ”FeynArts User’s Guide”, available
from www.feynarts.de

www.feynarts.de

Summing up the contributions from all the diagrams (for simplicity we consider here only one
quark flavor) we obtain

In[6]:= ampsTotal = Total[amps2] // Simplify

Out[6]:=
g2sδ

Glu1Glu2(pµpν−p2gµν)
(

(3D−2)p2CA
q2.(q−p)2

−
2((D−2)p2+4m2)

(q2−m2).((q−p)2−m2)
+

4(D−2)

q2−m2

)
2(D−1)p2

For convenience, we may also rewrite this result in terms of the Passarino-Veltman scalar functions
A0 and B0 by applying the function ToPaVe that is available since FeynCalc 9

In[7]:= res = ampsTotal // ToPaVe[#, q] & // Simplify

Out[7]:=
iπ2g2sδ

Glu1Glu2(p2gµν−pµpν)((2−3D)p2CAB0(p2,0,0)+2((D−2)p2+4m2)B0(p2,m2,m2)−4(D−2)A0(m2))
2(D−1)p2

Such an output is the simplest possible form that can be achieved with FeynCalc. However,
with the aid of some auxiliary tools one can in principle obtain even more explicit results with the
1-loop master integrals evaluated analytically. An add-on called FeynHelpers that connects
FeynCalc to such tools is currently in development, with the early version of the code already
available for testing 2

4. Summary
In summary, we described some of the new developments in FeynCalc 9 and provided an explicit
example for using the combination of FeynCalc and FeynArts to compute the 1-loop gluon
self-energy in QCD. While better support for multi-loop calculations is one of the important
goals in the future development of FeynCalc, we are also looking into possibilities to combine
FeynCalc with other useful software tools by developing the corresponding interfaces.

Acknowledgments
This work has been supported by the DFG and the NSFC through funds provided to the Sino-
German CRC 110 “Symmetries and the Emergence of Structure in QCD”, and by the DFG
cluster of excellence “Origin and structure of the universe” (www.universe-cluster.de). This
report has the preprint number TUM-EFT 78/16.

References
[1] Hahn T and Perez-Victoria M 1999 Comput. Phys. Commun. 118 153–165 (Preprint hep-ph/9807565)
[2] Cullen G, van Deurzen H, Greiner N, Heinrich G, Luisoni G, Mastrolia P, Mirabella E, Ossola G, Peraro

T, Schlenk J, von Soden-Fraunhofen J F and Tramontano F 2014 Eur. Phys. J. C 74 8, 3001 (Preprint
1404.7096)

[3] Belanger G, Boudjema F, Fujimoto J, Ishikawa T, Kaneko T, Kato K and Shimizu Y 2006 Phys. Rept. 430
117–209 (Preprint hep-ph/0308080)

[4] Wiebusch M 2014 Comput. Phys. Commun. 195 172–190 (Preprint 1412.6102)
[5] Patel H H 2015 Comput. Phys. Commun. 197 276–290 (Preprint 1503.01469)
[6] Vermaseren J A M 2007 (Preprint math-ph/0010025)
[7] Mertig R, Böhm M and Denner A 1991 Comput. Phys. Commun. 64 345–359
[8] Shtabovenko V, Mertig R and Orellana F 2016 (Preprint 1601.01167)
[9] Hahn T 2001 Comput. Phys. Commun. 140 418–431 (Preprint hep-ph/0012260)

[10] Feng F 2012 Comput. Phys. Commun. 183 2158–2164 (Preprint 1204.2314)

2 github.com/FeynCalc/feynhelpers

www.universe-cluster.de
hep-ph/9807565
1404.7096
hep-ph/0308080
1412.6102
1503.01469
math-ph/0010025
1601.01167
hep-ph/0012260
1204.2314

