
Density Estimation Trees as fast non-parametric

modelling tools

Lucio Anderlini

Istituto Nazionale di Fisica Nucleare, Sezione di Firenze – via Sansone 1, Sesto Fiorentino,
50019 Italy

E-mail: Lucio.Anderlini@cern.ch

Abstract. Density Estimation Trees (DETs) are decision trees trained on a multivariate
dataset to estimate its probability density function. While not competitive with kernel
techniques in terms of accuracy, they are incredibly fast, embarrassingly parallel and relatively
small when stored to disk. These properties make DETs appealing in the resource-expensive
horizon of the LHC data analysis. Possible applications may include selection optimization, fast
simulation and fast detector calibration. In this contribution I describe the algorithm, made
available to the HEP community in a RooFit implementation. A set of applications under
discussion within the LHCb Collaboration are also briefly illustrated.

1. Introduction
The fast increase of computing resources needed to analyse the data collected in modern hadron-
collider experiments, and the higher cost of processing units with respect to storage, pushes High-
Energy Physics (HEP) experiments to explore new techniques and technologies to move as much
as possible of the data analysis at the time of the data acquisition (online) in order to select
candidates to be stored on disk, with maximal, reasonably achievable, background rejection.
Besides, the complexity of the data analyses and the important inputs that the HEP community
is receiving from the fast-growing community of Data Scientists motivate research and studies of
multivariate algorithms able to operate in the distributed computing environments, being today
key elements in data processing and analysis.

The statistical inference of the probability density function underlying a given dataset is
extremely common in High Energy Physics. Fitting the dataset with a function is an example of
parametric density estimation. When possible, defining a parametric form of the the underlying
distribution and choose the values of those parameters maximising the likelihood is usually
the right approach. In multivariate problems with a large number of variables and important
correlation, however, fitting may become unpractical, and non-parametric density estimation
becomes a valid, largely employed, solution.

In HEP, the most common non-parametric density estimation is probably kernel density
estimation [1], based on the sum of normalized kernel functions centered on each data-entry.

In this write-up, I discuss Density Estimation Trees, algorithm based on multivariate, binary
tree structure oriented to non-parametric density estimation. Density Estimation Trees, are less
accurate than kernel density estimation, but they are incredibly faster and robust. Integrating
Density Estimation Trees is also trivial and fast, making iterative search algorithms convenient.



Finally, storing a Density Estimation Trees and propagate it through the computing nodes of
a distributed system is relatively cheap, which make them reasonable solutions for compressing
the statistical information of a given dataset.

An implementation of the algorithm in ROOT/RooFit is available through CERN GitLab1.

2. The algorithm
The idea of iteratively splitting a data sample, and estimating the probability density function
of each portion of the parameter-space from the number of data entries it includes and its
hyper-volume is not new. However, the technique had little room for applications in analyses of
datasets up to a few thousands of entries described by small sets of correlated variables.

Recently, kd-trees [2], have been used to split large samples in sub-sets of roughly the same
amount of data entries. The idea underlying kd-trees is the iterative split of the data-sample
using as threshold the median of a given projection. While powerful to solve a vast range
of problems, including notably nearest-neighbour searches, the lack of appropriateness of this
technique to estimate probability densities should be evident thinking to samples with a non-
negligible number of multiple data-entries (in at least one variable), as it is common with boolean
or integer inputs.

Density Estimation Trees define the threshold to split the node `, into the two sub nodes `R
and `L, by minimizing the Gini index, G(`) = R(`)−R(`R)−R(`L), where R(`) represents the
replacement error and is defined by [3]

R(`) ≡ − N2
`

N2
totV`

(1)

where V` is the hyper-volume of the portion of the data-space associated to the node `, and N`

the number of data entries it includes; Ntot is the number of data entries in the whole dataset.
Figure 1 shows an example of how the training is performed.

2.1. Overtraining
As in the case of Classification algorithms, overtraining is the misinterpretation of statistical
fluctuations of the dataset as relevant features to be reproduced by the model.

An example of overtraining of Density Estimation Trees is presented in Figure 2. In the
presented dataset, the alignment of data-entries in one of the input variables is interpreted
as narrow spikes. To compensate spikes, in terms of absolute normalization, the density is
underestimated in all of the other points of the parameter space.

Overtraining can be fought using either techniques developed specifically for decision trees
or for density estimation algorithms. Overtraining in decision trees is controlled through an
iterative approach consisting in pruning and cross-validation: finding and removing those
branches of the tree increasing the complexity of the tree without enhancing the statistical
agreement with a set of test samples (for example generated with the Leave-One-Out technique).
Cross-validation is very expensive in terms of computing power, scales poorly with the number
of data entries, and often fails to identify problems of over-training arising close to the root of
the decision tree.

Overtraining in density estimation is fought, instead, by defining a priori an expected
resolution width, neglecting fluctuation under that resolution while building the statistical
model. For example, kernel density estimation algorithms require as an input a parameter,
named bandwidth, which is related to the width of the kernel function. Abundant literature exists
on algorithms to optimise the bandwidth for a certain dataset, or to use different bandwidths for
different regions of the data space (adaptive kernel density estimation). Most of these techniques

1 gitlab.cern.ch/landerli/density-estimation-trees



Data sample First step

Second step Last step and evaluation

x

y

x > x0
x < x0

x > x0
x < x0

y > y0y < y0

x0

y > y1
y < y1

y

Figure 1. Schematic representation of the
training and the evaluation procedures of a
Density Estimation Tree.

y
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
ve

nt
s 

/ (
 0

.1
 )

1−10

1

10

210

Figure 2. Top, an example of
overtraining of Density Estimation Trees.
The random alignment of data-entries with
respect to one of the variables describing
the problem is misinterpreted as a spike in
the density estimation, as evident in the
projection onto the vertical axis shown on
the bottom.

are implemented as a preliminary step of the density estimation algorithm, often exploiting
univariate variance estimators or clustering techniques. Growing a Density Estimation Tree
with a minimal leaf width is fast, doesn’t require post-processing and it is found to result in
better-quality estimations with respect to cross-validation procedures. The same techniques
and algorithms used to compute the optimal bandwidth parameter for kernel density estimation
algorithm can be used to define a priori the optimal minimal leaf width of the Density Estimation
Tree.

2.2. Integration
As mentioned in the introduction, fast integration of the statistical model built using Density
Estimation Trees in one of the strengths of the algorithm. Integration usually respond to two
different needs: normalization and slicing.

Integrals to compute the overall normalization of the density estimation, or the contribution
in a large fraction of the data-space, should target the majority of the leaf nodes, and would
gain little exploiting the tree structure of the density estimator. A sum over the contributions
of each leaf node is considered the best strategy in this case

Instead, integrals over a narrow subset of the data-space should profit of the tree structure
of the density estimation to exclude from the integration domain as many leaves as possible, as
early as possible. In other words, in case of no intersection between the integral domain and the
portion of data-space associated to a branch, it is useless to check every single leaf, associated
to that branch for possible contributions to the integrals. Exploiting the tree structure when
performing integrals of slices of the data-space can reduce the computing time drastically in



large density estimation trees.
Slicing is used often when projecting the density estimation to a histogram: each bin of the

histogram is associated to a slice of the data-space and can be filled upon a slice integral as
described above.

2.3. Operations with Density Estimation Trees
Density Estimation Trees can be used, for example, to model data sample including different
components. It is therefore useful to combine different Decision Trees, with different weights,
into a unique Density Estimation Tree. To achieve combination of Decision Trees, one needs
at least the capability of performing scalar operations (such as multiplying by a constant) and
binary operations (such as summing two Density Estimation Trees). The implementation of the
former is pretty trivial, since it is sufficient to apply the scalar operation to value contained in
each node composing the Density Estimation Tree, therefore here I focus on the latter.

Combining two Density Estimation Trees is not trivial because the boundaries are obviously
different. The algorithm to combine two Density Estimation Trees consists in the iterative spit
of the terminal nodes of the first tree, following the boundaries of the terminal nodes of the
second tree. Once the combination is done, the first tree is compatible with the second and the
binary operation (e.g. the multiplication) can be performed node per node. The resulting tree
may have several additional layers with respect to the originating trees, therefore a final step
removing division between negligibly different nodes is advisable.

3. Discussion of possible applications
Density Estimation Trees are useful to approach problems defined by many variables and for
which huge statistical samples are available. To give a context to the following examples of
applications, I consider the calibration samples for the Particle IDentification (PID) algorithms
at the LHCb experiment.

PID calibration samples are sets of decay candidates reconstructed and selected relying on
kinematic variables only to distinguish between different types of long-lived particles (electrons,
muons, pions, kaons, and protons).

The PID strategy of the LHCb detector consists in the combined response of several detectors:
two ring Cherenkov detectors, an electromagnetic calorimeter, a hadronic calorimeter and a
muon system [4]. The response of the single detectors are combined into likelihoods used at
analysis level to define the tightness of the PID requirements.

Calibration samples count millions of background-subtracted candidates, each candidate is
defined by a set of kinematic variables (for example momentum and pseudorapidity) and a set
of PID likelihoods, one per particle type. The correlation between all variables is important and
not (always) linear.

3.1. Efficiency tables
The first application considered is the construction of tables defining the probability that a
candidate having a given set of kinematic variables, have likelihoods satisfying some criteria.

Building two Density Estimation Trees, with the kinematic variables defining the data-space,
one with the full data sample (tree tall), and one with the portion of data sample passing the
PID criteria (tree tpass) allows to compute the efficiency for each combination of the kinematic
variables by evaluating the Density Estimation Tree obtained taking the ratio tpass/tall.

For frequently-changing criteria a dynamic determination of the efficiency can be envisaged.
For simplicity, consider the generic univariate PID criterion y > 0. In this case a single Density
Estimation Tree d(x1, x2, y) defined by the kinematic variables (x1, x2), plus one PID variable
y, has to be trained on the calibration sample. The dynamic representation of the efficiency for



a candidate having kinematic variables (x̂1, x̂2) is the ratio

ε(x1, x2; y > 0) =

∫
y>0

d(x̂1, x̂2, y)dy

/∫
any y

d(x̂1, x̂2, y)dy. (2)

Thanks to the fast slice-integration algorithm, the computation of this ratio can be included
in an iterative optimization procedure aiming at an optimization of the threshold on y.

3.2. Sampling as fast simulation technique
Another important application is related to fast simulation of HEP events. Full simulation,
including interaction of the particles with the matter constituting the detectors, is becoming
so expensive to be expected exceeding the experiments’ budgets in the next few years.
Parametric simulation is seen as a viable solution, as proved by the great interest raised by
the DELPHES project [5]. However, parametrizing a simulation presents the same pitfalls as
parametrizing a density estimation: when correlation among different variables becomes relevant,
the mathematical form of the parametrization increases in complexity up to the point in which
it is unmanageable.

Density Estimation Trees are an interesting candidate for non-parametric fast simulation. Let
d(x1, ..., xN , y1, ..., yN ) be a Density Estimation Tree trained on a set of candidates characterized
from the variables (x1, ..., xN ), for which full simulation is performed for variables (y1, ..., yN ).

Given a new set of variables (x̂1, ..., x̂N ), it is possible to exploit the tree structure of d to
identify quickly which leaves have non-null intersection with (x̂1, ..., x̂N ). Choosing randomly
one of those leaves, and generating a set of random numbers (ŷ1, ..., ŷN ) within that leaf, is a
fast procedure to obtain a set of output variables following the same distributions as described
by the full simulation, including correlations with input and output variables.

4. Summary and outlook
I discussed Density Estimation Tree algorithms as fast modelling tools for high statistics
problems characterized by a large number of correlated variables and for which an approximated
model is acceptable. The fast training and integration capabilities make these algorithms of
interest for the high-demanding future of the High-Energy Physics experiments. The examples
discussed, which benefited from an active discussion within the Particle Identification Group
of the LHCb collaboration, explore cases where the statistical features of huge samples have to
be assessed faster than how standard estimators would require. In future, Density Estimation
Trees could be used to train Regression Multivariate Algorithms, such as Neural Networks, in
order to further speed up the query time (but loosing the fast-integration properties).

Acknowledgements
I thank Alberto Cassese, Anton Poluektov, and Marco Cattaneo for the encouragements in
developing this work and for the useful discussions we had.

References
[1] K. S. Cranmer, Comput. Phys. Commun. 136 (2001) 198 doi:10.1016/S0010-4655(00)00243-5 [hep-

ex/0011057].
[2] J. L. Bentley, Communications of the ACM 18 (1975) 9 doi:10.1016/S0010-4655(00)00243-5
[3] P. Ram and A. G. Gray, Proceedings of the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 627-635
[4] A. A. Alves et al., The LHCb detector at the LHC, JINST 3 (2008)
[5] J. de Favereau et al. [DELPHES 3 Collaboration], JHEP 1402 (2014) 057 doi:10.1007/JHEP02(2014)057

[arXiv:1307.6346 [hep-ex]].


