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Abstract. The application of sparse model-based clustering to the problem of primary vertex
finding is discussed. The observed z-positions of the charged primary tracks in a bunch crossing
are modeled by a Gaussian mixture. The mixture parameters are estimated via Markov Chain
Monte Carlo (MCMC). Sparsity is achieved by an appropriate prior on the mixture weights. The
results are shown and compared to clustering by the expectation-maximization (EM) algorithm.

1. Introduction
Primary vertex finding is an important step in the data analysis of collider experiments. In the
case of the LHC experiments, there is in each bunch crossing a large background of so-called pile-
up events which are superimposed to the signal event, i.e. the one that has triggered the recording
of the bunch crossing. Finding the correct assignment of the charged tracks to their respective
production vertices is crucial for the subsequent steps of vertex fitting and kinematic fitting. The
distribution of the primary vertices is very narrow in the transverse directions, but much wider
in the direction along the beams, which by convention is called the z direction. Finding the
primary vertices can therefore be formulated as a one-dimensional clustering problem, namely
finding clusters of primary tracks in the z direction. In a perfect clustering, each found cluster
of tracks corresponds to a single primary vertex. In reality, a cluster produced by the clustering
may contain tracks from several vertices, for instance when the clustering fails to resolve two
close vertices and merges them into a single cluster.

In this paper two methods are compared: sparse model-based clustering [1] and the EM
algorithm [2], an iterative implementation of maximum-likelihood estimation. In both methods
the observations are assumed to be drawn from a mixture model. Model-based clustering has
the advantage that it can include additional available information via prior densities. More
specifically, prior knowledge on the following quantities can be used: the number of clusters or
vertices; the cluster size, i.e. the number of tracks per vertex; and the spread of a cluster in
the z direction. In the sparse version clusters are allowed, even encouraged, to be empty. The
EM algorithm is less flexible, as the number of clusters is fixed, although clusters can effectively
merge. The distribution used to model the clusters is in principle arbitrary; in the case of
vertices a normal model is both adequate and easier to implement than other distributions.

2. Data
Proton-proton collisions were simulated using PYTHIA 8 [3], an event simulation engine for
high-energy physics. The center of mass energy was set to 13 TeV, the one of the LHC run in
2015. The detailed settings can be obtained from the authors on request.
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Figure 1. Left: distribution of the charged track multiplicity Mv per vertex, summed over all
simulated vertices; right: distribution of the spread sv of all simulated vertices.

Each collision produces a vertex with a number of particles attached to it. Only charged
particles in the final state with a transverse momentum of at least 700 MeV/c are retained. In
addition, their polar angle θ is restricted to the interval 9◦ ≤ θ ≤ 171◦, roughly corresponding
to the acceptance of a typical vertex detector. The multiplicity of the remaining charged tracks
per vertex is denoted by Mv. Its empirical distribution is shown in the left panel of Figure 1.
In order to make use of the distribution in the clustering, it is smoothed by a kernel estimator.

The z-positions of the vertices are generated according to a normal distribution centered at
the origin with standard deviation σ = 65 mm, corresponding to the luminous region in the
LHC (see [4]). This standard deviation has been determined from

√
s = 7 TeV data, but is

about the same for
√
s = 13 TeV collisions. The z-positions of the tracks belonging to a vertex

are smeared by an additional statistical error due to multiple scattering in the beam tube plus
the position and the extrapolation error from the innermost pixel layer. For each vertex, its
spread sv is computed as the r.m.s. of the z-positions of the tracks belonging to the vertex. The
empirical distribution of sv is shown in the right panel of Figure 1 and is characterized by its
mean µs = 0.048 mm and its standard deviation σs = 0.013 mm.

To simulate an amount of pile-up similar to the one expected in the Phase I upgrade of
LHC, the vertices are grouped into individual bunch crossings. Each bunch crossing consists
of L superimposed vertices, where L is drawn from a Poisson distribution with mean λ = 100.
As the average track multiplicity Mv per vertex is about 35, the average number of tracks per
bunch crossing ist about 3500.

3. Clustering algorithms
3.1. Data preparation for clustering
Clustering produces groups of tracks, called clusters, that are compatible with the hypothesis
that they belong to the same collision vertex. The input is the set of the z-positions zi of all
tracks in a bunch crossing. For a better performance, however, the clustering is not applied to
all tracks in a bunch crossing, but rather to sections in z with boundaries that depend on the
data. To find suitable boundaries, the z-positions of the tracks in a bunch crossing are filled
into a 1D histogram with a bin width of h = 1 mm. Then the following three preparation steps
are executed.

1. First, boundaries of basic sections (BS) are defined by empty bins. These BS usually
contain between 1 and 3 vertices. Tracks belonging to the same vertex are always contained
within a single BS, as there is a gap of at least 1 mm between two BS.



2. Next, as a trade-off between accuracy and speed, ten adjacent BS are merged into one
final section (FS).

3. For each FS, the three most likely numbers of vertices K1,K2,K3 are estimated. The
likelihood of a value K is given by the probability of the vertex multiplicity M = N/K in the
empirical distribution g(Mv), where N is the number of tracks in the FS.

The cluster finding then proceeds independently in each FS. This can be done in parallel,
although this was not exploited in the present study.

3.2. Sparse model-based clustering
The sparse model-based clustering algorithm and its implementation is explained in detail in [1].
The basic idea is to start with a large number of clusters and let the algorithm find out how
many clusters are needed in the most economical clustering.

The input to the clustering are the z-positions zi, i = 1, . . . , N , of the N tracks in the FS.
The initial number of clusters K is the largest of K1 +K0,K2 +K0,K3 +K0 with K0 = 5. The
observations zi are assumed to be drawn from a Gaussian mixture with K components and the
following probability density function (pdf):

f(zi|θ1, . . . ,θK ,η) =

K∑
k=1

ηk ϕk(zi|θk), (1)

where ϕk(zi|θk) is the Gaussian pdf with component specific parameters θk = (µk, σ
2
k), and ηk is

the weight of component k. Solutions that are sparse with respect to K are obtained by choosing
an appropriate prior distribution for the weights η = (η1, . . . , ηK). In this study the prior is a
symmetric Dirichlet distribution with concentration parameter e0 and the following pdf:

p(η1, . . . , ηK |e0) =
Γ(Ke0)

Γ(e0)K

K∏
k=1

ηe0 − 1
k . (2)

Smaller values of e0 tend to produce fewer clusters than larger values. The prior distribution
of the component means is a Gaussian centered at the mean b of the observations. Its width
depends on a hyperparameter N0 that controls the amount of information in the prior relative to
the information in the observations. The prior of the component variances is the inverse Gamma
distribution IG(c, C), where the hyperparameters c and C are chosen such that the mean is µs
and the variance is σs

2 (see Section 2 and Figure 1).
The clustering proceeds via data augmentation. For each observation zi, a latent allocation

variable Si is created that takes integer values in the set {1, . . . ,K}. If Si = k, zi is assigned to
cluster k, and the pdf of zi conditional on the assignment is given by:

f(zi|θ1, . . . ,θK , Si = k) = ϕ(zi|µk, σ2k), Pr(Si = k|η) = ηk. (3)

Initial values of the allocation variables S are obtained from a tentative clustering by the simple
and familiar k-means algorithm [5]. Estimation of the allocation variables is done via MCMC.
A Gibbs sampler [6] generates a random sample from the posterior distribution of S, given the
data and all priors. It iterates the following steps:

(i) Simulate the weights ηk and the component specific parameters θk = (µk, σ
2
k) conditional

on the current allocations, for k = 1, . . . ,K.

(ii) Sample the allocation variables Si, i = 1, . . . , N from the discrete distribution on {1, . . . ,K}
defined by:

Pr(Si = k|zi, ηk, µk, σ2k) ∝ ηkϕ(zi|µk, σ2k). (4)



(iii) Update the hyperparameters b,N0, c, C according to the current cluster sizes.

The full details of the sampler including the updating formulas are spelled out in [1]. After
generating the Markov chain, the clusters are identified by choosing the configuration of S with
the largest posterior probability. Note that the number of clusters that are actually populated
is likely to be smaller than the initial number K.

3.3. EM clustering
The EM algorithm [2] is an iterative method for finding the maximum likelihood estimates of the
weights ηk and the component parameters θk of the mixture in Eq. (1) for given K. In contrast
to the sparse model-based clustering, the EM algorithm is not adaptive. To compensate for
this, multiple runs with different numbers of components were performed, using the previously
estimated most likely numbers of vertices for the algorithm, namely K1,K2,K3, . . . ,K3 + 5.
Finally, the clustering with the smallest Bayesian information criterion (BIC) was selected.

4. Results
The two methods were compared by means of a simulation study with 600 bunch crossings,
containing about 60 000 vertices and about 2 million tracks. The following runs were performed:

• Run MB1: Model-based clustering, e0 = 0.1, long Markov chain (5000 draws)

• Run MB2: Model-based clustering, e0 = 1.0, long Markov chain (5000 draws)

• Run MB3: Model-based clustering, e0 = 1.0, short Markov chain (1000 draws)

• Run EM: EM algorithm with BIC

The performance of the clustering methods can be assessed by the difference ∆K = Kest−Ktrue

of the estimated and the true number of clusters in a FS, and by the cluster purity, defined as the
largest fraction of tracks in the cluster belonging to the same vertex. The frequency distribution
of ∆K is shown in Fig. 2 for the four runs. The numerical results are summarized in Table 1.
It shows the average, the standard deviation and the root of the mean squared error (r.m.s.e.)
of ∆K, the average purity and the fraction of perfect clusters with 100% purity, i.e. clusters
without contamination from tracks belonging to other vertices.

The run with the smallest r.m.s.e. is MB2, and the average number of clusters is very close
to the true one. The shorter chain in MB3 still gives the correct average, but a slightly larger
standard deviation and r.m.s.e. The standard deviation of ∆K in run MB1 is smaller than in
run MB2, but there are too few clusters on average. The EM algorithm combined with the BIC
overestimates the number of clusters, a feature described in the literature [7]. In all runs, more
than 80% of the clusters are perfect; in nearly all of the other cases the cluster purity is between
50% and 100%, indicating the fusion of two very close primary vertices into a single cluster.
This problem can be resolved to some extent in a subsequent adaptive vertex fit [8].

Table 1. Summary of the results.

∆K = Kest −Ktrue Purity

Run average std. dev. r.m.s.e. average perfect

MB1 −0.98 1.43 1.73 0.95 0.83
MB2 −0.06 1.52 1.52 0.95 0.83
MB3 0.03 1.68 1.69 0.95 0.82

EM 1.47 3.15 3.47 0.93 0.81
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Figure 2. Estimated minus true number of clusters for runs MB1 (top left), MB2 (top right),
MB3 (bottom left), and EM (bottom right).

5. Discussion and outlook
Model-based clustering has a number of attractive features: prior information on the number
of tracks per vertex and the vertex spread is used; this information can be extracted from runs
with low luminosity, where vertex finding is easy; only the expected (average) number of vertices
depends on the luminosity; with a mimimal amount of tuning the correct average number of
vertices is obtained, in contrast to the EM algorithm; and finer tuning of the parameters of the
priors can be expected to give further improvements in the performance.

The main drawback is that sampling by MCMC is slow by HEP standards, so that model-
based clustering is probably not suitable for standard vertex finding. Also, fine tuning of all
hyperparameters is computationally intensive. The speed of the method is, however, less relevant
in applications with fewer observations and fewer clusters, for instance ring finding in RICH
detectors or cluster finding in calorimeters, where a lot of prior information on the cluster
shape is available and can be incorporated in a natural manner. Further studies will have to
concentrate on the optimal settings of the prior parameters and also on the robustness of the
clustering against additional noise.
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