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SVMs and Generalisation for HEP
‣ Outline

‣ Support Vector Machines: 
‣ Overview 
‣ Hard Margin SVM 
‣ Soft Margin SVM 
‣ Kernel Functions and Feature Spaces 
‣ Checkerboard example 

‣ Generalisation: 
‣ Motivation and the issue 
‣ Hold-out method 
‣ Cross-validation to generalise MVA techniques 
‣ Checkerboard example again 

‣ Summary
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SVMs and Generalisation for HEP
‣ SVM - Overview

‣ Linearly separable problems are solved with hard margin SVM. 
‣ Optimal SVM provides absolute classification, i.e. no 

classification error. 

‣ Soft margin SVM used for overlapping data samples. 
‣ Parameters, slack (ξ) and cost (C), introduced to provide 

penalty and regulate misclassification. 

‣ Kernel functions, K, provide mapping from the problem space 
(X) to higher dimensional feature space (F). 
‣ Problem may be separable in this dual space. 
‣ In practice kernel function is varied to test performance, 

rather than objectively understanding the mapping. 
‣ Referred to as Kernel Trick.
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SVMs and Generalisation for HEP
‣ SVM - Overview

‣ Discussions of methods and examples using those 
implemented in TMVA. 
‣ TMVA is a multivariate analysis toolkit integrated within 

ROOT. 

‣ Functionality detailed soon available to download as part of the 
ROOT release. 

‣ Details of usage can be found in the backup slides.

http://tmva.sourceforge.net/
https://root.cern.ch/
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SVMs and Generalisation for HEP
‣ SVM - Hard Margin

γ=marginb

w

‣ Object is to find maximally separating hyperplane. 
‣ Achieved by maximising the margin, γ: 

‣ Distance between the hyperplane and the points closest to 
the decision boundary, known as the support vectors (SV). 

‣ Simple example: 
‣ Clearly if this is possible with SVM, cutting on the data would 

remove the background.



ACAT 20166Tom Stevenson

SVMs and Generalisation for HEP
‣ SVM - Hard Margin

and

‣ Note: 
‣ αi are non-zero for support vectors only. 
‣ The last sum provides a constraint equation for optimisation.

γ=marginb

w

‣ This problem is solved in the dual space by minimising the 
Lagrangian for the parameters αi (Lagrange multipliers):

‣ Subject to:
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SVMs and Generalisation for HEP
‣ SVM - Soft Margin

ξi

‣ Relax the hard margin constraint by 
introducing misclassification. 

‣ Described by: 
‣ Slack (ξi) - the distance from the 

hyperplane (defined by the 
margin) to the ith support vector. 

‣ Cost (C) - tuneable weight which 
penalises misclassified points. 
Multiplies sum of slack 
parameters. 

‣ More useful for most problems.
‣ Note: Alternatively described by 

loss functions, which describe 
the error rate.
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SVMs and Generalisation for HEP
‣ SVM - Soft Margin

ξi

‣ The dual form of the Lagrangian 
simplifies to the same as for the hard 
margin case:

where now

and as before, the optimisation 
constraint is given by
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SVMs and Generalisation for HEP
‣ SVM - Kernel Functions

‣ The kernel function K(x,y) is used in place of the inner product. 

‣ K(x,y) maps the problem from the input space, X, to a 
potentially higher dimensional, implicit feature space, 

 F={𝜙(x)|x ∈ X} where the data may then be separable. 

‣ Feature map, 𝜙(x), or the feature space do not need to be 
known, “kernel trick”. 

‣ Some properties required to be a proper kernel function. 

‣ Inner product defines the identity kernel.
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SVMs and Generalisation for HEP
‣ SVM - Kernel Functions

‣ Polynomial: 

‣ Radial Basis Function (RBF): 
‣ Distance between two support vectors, x and y, is computed 

and used as input to Gaussian KF: 

(1)

(2)
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SVMs and Generalisation for HEP
‣ SVM - Kernel Functions

‣ Multi-Gaussian:

(3)

‣ Neglects correlations between dimensions in the input data. 
‣ Further generalised as: 

‣ Σ is the n×n covariance matrix, where n=dim(X). 
‣ Can be computationally expensive, so usually assumed diagonal.
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SVMs and Generalisation for HEP
‣ SVM - Checkerboard Example
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‣ Example dataset: 
‣ 1000 signal (blue), 1000 background (red) 
‣ Checkerboard arrangement
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SVMs and Generalisation for HEP
‣ SVM - Checkerboard Example

‣ MVAs optimised and trained using TMVA out-the-box 
‣ Parameters fully optimised using hold-out method 
‣ Boosted Decision Tree (BDT) for comparison
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SVM 
RBF Kernel (2) 

SVM  
Multi-Gaussian 

 (3) 

SVM  
Polynomial 
 Kernel (1) BDT

Order = 9 
Theta = 0.984 
C     = 8.78

Gamma = 4.654 
C     = 9.903

Gamma_x = 4.410 
Gamma_y = 4.750 
C       = 9.519

AdaBoostBeta = 0.631 
NTrees       = 996 
MaxDepth     = 3 
MinNodeSize  = 5%

http://tmva.sourceforge.net/
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SVMs and Generalisation for HEP
‣ SVM - Checkerboard Example

‣ ROC curve shows similar performance for all MVAs. 
‣ We cannot be sure that these solutions are fine tuned. 
‣ Require a method to confirm this, i.e. generalisation.
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MVA Method:
SVM_Poly
SVM_RBF
SVM_MG
BDT

Background rejection versus Signal efficiency

‣ Note on measures for generalisation: 
‣ TMVA computation uses a binned 

KS test (as on previous slide) 
which is not uniformly distributed 
and therefore should not be 
taken “literally” as a quantified 
metric of if a classifier is 
overtrained.
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Background rejection versus Signal efficiency
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SVMs and Generalisation for HEP
‣ Generalisation - Motivation

‣ Need confidence that the trained MVA is robust and the 
performance on unseen samples can be accurately predicted, 
i.e. generalised. 

‣ This motivates validation techniques which are required for: 
‣ Model Selection: 

‣ Most methods have at least one free parameter e.g. 
‣ BDT - #trees, min node size, etc. 
‣ MLP - #neurons, #layers, weight vectors, etc. 
‣ SVM - kernel function, kernel parameters, cost, etc. 

‣ How are these parameters of models “optimally” 
selected? 

‣ Performance Estimation: 
‣ How does the chosen model perform? 
‣ Usually true error rate is used (misclassification rate for 

the entire dataset).
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SVMs and Generalisation for HEP
‣ Generalisation - The Issue

‣ For an unlimited dataset these issues are trivial, simply iterate 
through parameters and find model with lowest error rate. 

‣ In reality datasets are smaller than we would like. 

‣ Naïvely use whole dataset to select and train classifier and to 
estimate error. 
‣ Leads to overfitting/overtraining as classifier learns 

fluctuations in the dataset and performs worse on unseen 
data. 

‣ Overfitting more distinct for classifiers with large number of 
tuneable parameters. 

‣ Also gives overly optimistic estimation of error rate. 

‣ See the recent review by S. Arlot and A. Celisse on "Cross-validation procedures for model 
selection" in Statistics Surveys Vol. 4 (2010) 4079, and references therein for a more 
detailed discussion on cross validation.
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SVMs and Generalisation for HEP
‣ Generalisation - Hold-Out Validation

‣ Potential way to overcome these issues is use hold-out 
technique, splitting the dataset into training and test 
subsamples.

Dataset

Training sample Test sample

‣ Can use these datasets to select “optimal” parameters, 
for example back-propagation for MLP.

Test sample error

Training sample error
Epochs

Er
ro

r E
st

im
at

e

Optimal Point

‣ Can give misleading error estimate depending on how 
the data is split.
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SVMs and Generalisation for HEP
‣ Generalisation - k-fold Cross-validation

‣ May not be able to reserve a large portion of data for 
testing, so hold-out method may not be viable. 

‣ Instead can use k-fold cross-validation:
Dataset

…Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold k

‣ Advantage of using the whole dataset for testing and training. 

‣ True error rate is then estimated using average error rate:

‣ Split the dataset into k randomly sampled independent subsets (folds). 
‣ Train classifier with k-1 folds and test with remaining fold. 
‣ Repeat k times.
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SVMs and Generalisation for HEP
‣ Generalisation - k-fold Cross-validation

‣ How many folds??? 

‣ Large number of folds:  
‣ Good estimate of average error rate (bias of the estimator is 

small). 
‣ Variance of the estimator is large. 
‣ Computational time is long. 

‣ Small number of folds:  
‣ Poor estimate of average error rate (bias of the estimator is 

large). 
‣ Variance of the estimator is small. 
‣ Computational time is relatively short. 

‣ In reality choice is motivated by the size of the dataset, 
i.e.  sparse dataset need extreme of leave-one-out 
method to train on as much data as possible.
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SVMs and Generalisation for HEP
‣ Generalisation - k-fold Cross-validation
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‣ Hypothetical example: 

‣ For sample size of 200, 5 
fold CV will estimate the 
error with similar 
performance on training 
set of 160 to that of the 
full sample. 

‣ However for sample of 
50, 5 fold CV will give a 
larger error than not using 
CV.

‣ Common choices are between 5 & 10 folds, however k should be 
determined for the given problem.
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SVMs and Generalisation for HEP
‣ Generalisation - k-fold Cross-validation

‣ Ideally 3 statistically independent dataset; training, 
validation and testing. 

‣ Training and validation sets used to choose classifier/
model and tune parameters. 

‣ Test set used to assess performance of final fully trained 
classifier. 

‣ Avoids bias from using the same sample for model 
selection and parameter tuning. 

‣ Taking the “best” performing MVA doesn’t necessarily 
give the desired output. 
‣ e.g. some pathologies in distributions. 

‣ Also involves throwing away a large number of trainings. 
‣ Take the aggregated output of all the final trained MVAs 

on the test sample in some form of average.
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SVMs and Generalisation for HEP
‣ Generalisation - k-fold Cross-validation

Courtesy of Adrian Bevan

MVA 1

MVA 2

MVA 3

MVA n

. 

. 

.

k-fold cross 
validation

MVA algorithms with different 
generic architectures, and 
weight parameters to be 
determined.

Optimised 
parameters

Each optimised MVA has a 
corresponding validation 
error E.  This FOM can be 
used to determine the 
"optimal" MVA to use with 
the test sample.

The "optimal" MVA 
applied to the tertiary 
test sample should 
provide a similar 
performance to that of 
the training and 
validation sample if the 
MVA is to be considered 
general. 

If not; start the process 
again.

Optimised 
parameters

Optimised 
parameters

General "optimal" 
solution?

Select MVA 
with best 
validation E.

E 

1) Train                               2) Validate                                3) Test

Courtesy of Adrian Bevan

“Average” all final 
MVA trainings, i.e.

or
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example
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‣ Following procedure outline, using macro for TMVA 
‣ 4-fold cross validation on checkerboard - SVM RBF

‣ Further k-fold cross validated trainings can be found in 
backup.
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example
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‣ Following procedure outline, using macro for TMVA 
‣ 4-fold cross validation on checkerboard - SVM RBF

‣ Further k-fold cross validated trainings can be found in 
backup.
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SVMs and Generalisation for HEP
‣ Summary

‣ Support Vector Machines: 
‣ Modern supervised learning method. 
‣ Kernel functions set is expanded and soon included in 

TMVA release. 
‣ Several minor modifications in mapping input 

variables to ensure the algorithm more user friendly. 

‣ Generalisation: 
‣ HEP generally uses hold-out CV. 
‣ k-fold CV used in the wider ML community. 
‣ A multistage training/validation/testing process have 

been detailed. 
‣ Example macro to perform k-fold CV with TMVA soon 

available in ROOT release.
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SVMs and Generalisation for HEP
‣ Ongoing work

‣ Integrating k-fold CV into TMVA. 

‣ Investigating real physics examples: 
‣ H→ττ Higgs machine learning challenge dataset. 
‣ Main Physics Analyses. 
‣ Benchmarking against BDT etc.
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‣ H→ττ example using first 10 variables:

https://www.kaggle.com/c/higgs-boson
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SVMs and Generalisation for HEP

Backup
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SVMs and Generalisation for HEP
‣ SVM - Soft Margin

‣ Options table for SVM in TMVA.
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SVMs and Generalisation for HEP
‣ SVM - Hard Margin

‣ Primal form of problem: 
‣ Optimise the parameters of the 

maximal margin hyperplane: 

‣ Subject to:

‣ Expressed as a minimisation problem in Lagrangian form as:

where and
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SVMs and Generalisation for HEP
‣ SVM - Soft Margin

‣ Soft margin primal Lagrangian

‣ Minimisation gives:
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example

‣ Following procedure outline 
‣ 4-fold cross validation on checkerboard - SVM RBF

4-fold Best 4-fold Average
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example

4-fold Best 4-fold Average

‣ Following procedure outline 
‣ 4-fold cross validation on checkerboard - SVM RBF
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example

‣ 4-fold cross validation on checkerboard - BDT
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example
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‣ 4-fold cross validation on checkerboard - BDT
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example

BDT response
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Kolmogorov-Smirnov test: signal (background) probability = 0.008 (0.002)
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‣ 4-fold cross validation on checkerboard - BDT
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example
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‣ 4-fold cross validation on checkerboard - BDT
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SVMs and Generalisation for HEP
‣ Generalisation - Checkerboard Example

‣ ROC curves for all trainings 
‣ Cross-validated BDTs in backup slides
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SVMs and Generalisation for HEP
‣ Ongoing work
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