Status and plans for the IR optics and layout

R. Martin

FCC-hh BDS meeting June 1, 2015

R. Martin

Status and plans for the IR optics and layout

June 1, 2015

 β^* reach with $B_{max} = 11 \text{ T}.$

• β^* gain of 1.6 for individual apertures

FCC-hh interaction region design $\beta^*=$ 0.3 m

Option 1: $L^* = 36 \text{ m}$

Chromaticity:

$$\xi = rac{1}{4\pi} \int k_1 eta(s) ds$$

For $eta^* = 0.3$ m:
 $\xi_x = 47.2$

 $\xi_y = -61.5$ (per side, triplet only)

Simulations by F. Cerutti and I. M. Besana

 dose seems acceptable for 15mm shielding at 3000 fb⁻¹, for higher luminosity, optimization is required

June 1, 2015

- makes use of HL-LHC triplet magnets (SLHC V3.1b)
- aperture and beam size scale similary ⇒ impact of shielding decreases for larger aperture

FCC-hh interaction region design $\beta^* = \beta^*$ reach with 140 mm aperture 0.3 m and 150 T/m gradient

Chromaticity:

$$\xi = \frac{1}{4\pi} \int k_1 \beta(s) ds$$

For $\beta^* = 0.3$ m:
 $\xi_x = 81.0$
 $\xi_y = -64.2$
(per side, triplet only)

Simulations by F. Cerutti and I. M. Besana

Update on magnet apertures

L*	36 m	61.5 m
$B_{D1}[T]$	12	
$B_{D2}[T]$	10	
coil aperture 2 <i>r</i> [mm]		
- D1.A	87	111
- D1.B	121	143
- D2.A	77	97
- D2.B	60	79
Separation <i>d</i> [mm]		
D2.A	264	
D2.B	294	

 if field requirements cannot be met at given aperture ⇒ smaller field, longer separation section

Analytic length scaling

- scaling all lengths from a known and matched lattice
- larger crossing angle for longer triplet included
- Lines: analytically scaled, Dots: values found with MAD-X (no rematching of quadrupoles) ⇒ good agreement
- both scaled lattices differ in ratio of *L** and *L*_{triplet}
- conclusion: make L^* as long as possible, make $\frac{L_{triplet}}{L^*}$ as large as possible
- limits: chromaticity and overall length

Pion tracking code

- $\bullet\,$ Idea: implement radiation dose as a parameter in the triplet design $\Rightarrow\,$ need for fast estimates
- linear tracking of pions through Q1
- estimates dose on a hit/non-hit basis
- still much work to do

Result of an early run using some simplifications

- 一司

- split Q1 to reduce radiation dose
 - \Rightarrow pion tracking code

• start caring about limitations of L* and L_{triplet}:

- Chromaticity \Rightarrow dynamic aperture
- magnet errors \Rightarrow higher order multipoles and misalignments
- total IR length
- magnet cost (*L*_{triplet})

• study dose /
$$\beta^*$$
 vs. L^* and $L_{triplet}$

 \Rightarrow try to get an analytical scaling for $\frac{L_{triplet}}{L^*}$ as well?