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Luminosity and beam-
beam tune shift

 Round beams
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Critical β*

 The system reaches ultimately reaches a balance between burn-off 
and synchrotron damping

 The beam brightness (i.e. the beam-beam parameter) becomes constant

 To achieve a constant beam-beam parameter of 0.01, one requires :
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→ One will need to either actively control the beam brightness or 
live with a non-constant beam-beam parameter



  

Crossing angle

 Crossing angle defined by long-range beam-
beam interaction :
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→ Depends on the crossing 
scheme (L*, experimental 
spectrometer, …)

 β* <~0.3 m are not very 
interesting w/o crab cavities



  

More elaborate 
luminosity model

 Still assume round beam (blow-up required in the vertical plane)

 Beam-beam parameter computed assuming two IPs with alternating 
crossing angle

 The crossing angle is adjusted during the fill to keep the same 
beam-beam separation at the long-range encounters



  

Beam parameter 
evolution

 The nominal configuration 
is limited by the small 
beam-beam tune shift
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Beam parameter 
evolution

 The nominal configuration 
is limited by the small 
beam-beam tune shift

 The beam parameter 
evolution is very different in 
configurations with larger 
beam-beam tune shift

 Reduced β* allows to 
achieve higher integrated 
luminosity within shorter fills

Saturation due to 
the geometric factor

Max ξ
tot



  

Adaptive optics

 β* can be reduced with the reduction of the emittance during the 
fill without increased aperture requirement by keeping the ratio 
ε/β* constant

 The beam-stay-clear and the normalised beam-beam separation are kept 
constant

→ no change of crossing angle
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Beam parameter 
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 Nominal configuration, with 
β* decreasing to 0.3 m 
during the fill

 1.5x performance increase, but 
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Beam parameter 
evolution

min

min

 Nominal configuration, with 
β* decreasing to 0.3 m 
during the fill

 1.5x performance increase, but 
at the cost of very long fills

 Large performance gain 
with slightly larger beam-
beam tune shift

 Similar to the configurations with 
constant β*

 But the smallest β* is achieved 
with a small emittance

→ Relaxed aperture 
requirements

Constant β* Adaptive β*



  

Crab cavity

 Crab cavities are not 
helpful in configurations 
limited by the head-on 
beam-beam parameter

 Slight gain for β*
min

 < 0.3 m

→ Adapting the β* allows 
to circumvent the needs 
for crab cavities, but the 
dynamics with large 
Piwinski angles has to be 
assessed

Constant β* Adaptive β*
Adaptive β* + CC

min

min
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An early separation scheme 
for the LHC upgrade

 G. Sterbini, EPFL PhD thesis No 4574 (2010)

→ Place a dipole as close as possible to the IP in order to reduce the 
internal crossing angle keeping the same orbit in the triplet

 D0 integrated strength : 10-15 Tm



  

An early separation scheme 
for the LHC upgrade

 G. Sterbini, EPFL PhD thesis No 4574 (2010)

→ Place a dipole as close as possible to the IP in order to reduce the 
internal crossing angle keeping the same orbit in the triplet

 D0 integrated strength 10-15 Tm

 Large impact on the 
separation between the 
beams

→ Similar long-range 
beam-beam  'strength' with 
lower geometric reduction 
factor



  

First try with the FCC IR

 Triplet first (scaled HL-LHC) β* = 0.3m, L* = 36m

→ θ
full

 = 70 μrad, such that S
BB

 = 12 σ
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First try with the FCC IR

 Triplet first (scaled HL-LHC) β* = 0.3m, L* = 36m

→ θ
full

 = 70 μrad, such that S
BB

 = 12 σ

 A similar early separation scheme allows to reduce the internal 
Xing angle (10 Tm D0 at 10m from the IP) 

 The reversed scheme allows to reduce the external Xing angle



  

Conclusion
 Small β* is clearly a key for the luminosity 

performance
 Adapting β* during the fill with a constant aperture 

requirements in the triplet offers a significant 
improvement

 Experimental spectrometers might be used to 
increase the performance

 W/o crab cavity an early separation scheme could 
reduce the geometric reduction factor

 With crab cavities, the reversed scheme might relax 
the aperture requirement in the triplet

→ The performance gain for both scheme should 
be quantified



  

BACKUP
Zoom on the drift space



  

BACKUP
Hourglass effect

 Hourglass is relevant for β~σ
s
 = 0.08 m

→ Only relevant for configurations with crab cavities
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