

X. Buffat

- Performance reach with small β*
 - Adaptive β*
 - Crab cavities
- Crossing scheme
- Conclusion

Luminosity and beambeam tune shift

Critical β*

$$\frac{1}{N} \frac{dN}{dT} = \sigma_{tot} \frac{n_{IP} f_{rev} \gamma}{4 \pi \beta^*} \frac{N}{\epsilon}$$
$$\frac{1}{\epsilon} \frac{d \epsilon}{dT} = -\frac{1}{\tau}$$

$$\frac{N}{\epsilon} = cst \Rightarrow \sigma_{tot} \frac{f_{rev} \gamma}{r_0 \beta^*} \xi_{tot} = \frac{1}{\tau}$$

- The system reaches ultimately reaches a balance between burn-off and synchrotron damping
 - The beam brightness (i.e. the beam-beam parameter) becomes constant
- To achieve a constant beam-beam parameter of 0.01, one requires :

$$\beta_c^* = \sigma_{tot} \tau \frac{f_{rev} \gamma}{r_0} \xi_{tot} \approx 0.06 \, m$$

 \rightarrow One will need to either actively control the beam brightness or live with a non-constant beam-beam parameter

 Crossing angle defined by long-range beambeam interaction :

More elaborate luminosity model

$$\frac{\partial I}{\partial t} = -\frac{I(t)}{\tau_{lifetime}} - \mathcal{L}_{IP}(t) N_{IP} \sigma_{tot}$$

$$\frac{\partial \epsilon_x}{\partial t} = -\frac{\epsilon_x(t)}{\tau_{rad,x}} + \alpha_{rad,x} + \frac{I(t)}{\epsilon_y(t)} \alpha_{IBS,x}$$

$$\frac{\partial \epsilon_y}{\partial t} = -\frac{\epsilon_y(t)}{\tau_{rad,y}}$$

$$\frac{\partial \epsilon_s}{\partial t} = 0$$

$$\mathcal{L}_{IP} = \frac{n_b f_{rev} N(t)^2 \gamma_r}{4\pi \beta^* \sqrt{\epsilon_x(t)\epsilon_y(t)}} \frac{\cos(\phi(t))^2}{\sqrt{1 + \frac{\sigma_s^2}{\sigma^2} \tan(\phi(t))^2}}$$

- Still assume round beam (blow-up required in the vertical plane)
- Beam-beam parameter computed assuming two IPs with alternating crossing angle
- The crossing angle is adjusted during the fill to keep the same beam-beam separation at the long-range encounters

 The nominal configuration is limited by the small beam-beam tune shift

- The nominal configuration is limited by the small beam-beam tune shift
 - The beam parameter evolution is very different in configurations with larger beam-beam tune shift

- The nominal configuration is limited by the small beam-beam tune shift
 - The beam parameter evolution is very different in configurations with larger beam-beam tune shift
- Reduced β* allows to achieve higher integrated luminosity within shorter fills

Adaptive optics

- β* can be reduced with the reduction of the emittance during the fill without increased aperture requirement by keeping the ratio ε/β* constant
 - The beam-stay-clear and the normalised beam-beam separation are kept constant
 - \rightarrow no change of crossing angle

- Nominal configuration, with β* decreasing to 0.3 m during the fill
 - 1.5x performance increase, but at the cost of very long fills

- Nominal configuration, with β* decreasing to 0.3 m during the fill
 - 1.5x performance increase, but at the cost of very long fills
- Large performance gain with slightly larger beambeam tune shift

- Nominal configuration, with β* decreasing to 0.3 m during the fill
 - 1.5x performance increase, but at the cost of very long fills
- Large performance gain with slightly larger beambeam tune shift
 - Similar to the configurations with constant β*
 - But the smallest β* is achieved with a small emittance

→ Relaxed aperture requirements

Crab cavity

• Slight gain for
$$\beta^*_{min} < 0.3 \text{ m}$$

 \rightarrow Adapting the β^* allows to circumvent the needs for crab cavities, but the dynamics with large Piwinski angles has to be assessed

W. Riegler @ FCC week 2015

CMS & ATLAS

Twin Solenoid + Dipole, BL² scaled Tracker r=2.5m p, reso 15% at 10TeV

12 lambda ECAL+HCAL =1m+2.5m Coil R=6m, 6T, Shielding Coil Forward Dipole 10Tm

Toroid + Dipole, BL² scaled Tracker r=2.5m p_t reso 15% at 10TeV Thin Coil R= 2.5m, B= 4T 12 lambda ECAL+HCAL =1m+2.5m Muon Toroid Forward Dipole 10Tm Tracker Emcal Hcal Muon Coil TAS Triplet

CMS+, resolution scaled

Tracker r=1.2m p, reso 15% at 10TeV 12 lambda ECAL+HCAL =0.6m+2.2m Coil R=4m Iron Return Yoke → Extreme detector technology push

An early separation scheme for the LHC upgrade

G. Sterbini, EPFL PhD thesis No 4574 (2010)

 \rightarrow Place a dipole as close as possible to the IP in order to reduce the internal crossing angle keeping the same orbit in the triplet

D0 integrated strength : 10-15 Tm

An early separation scheme for the LHC upgrade

G. Sterbini, EPFL PhD thesis No 4574 (2010)

 \rightarrow Place a dipole as close as possible to the IP in order to reduce the internal crossing angle keeping the same orbit in the triplet

- D0 integrated strength 10-15 Tm
- Large impact on the separation between the beams

→ Similar long-range beam-beam 'strength' with lower geometric reduction factor

Encounter number [1]

• Triplet first (scaled HL-LHC) $\beta^* = 0.3m$, L* = 36m

 $\rightarrow \theta_{_{full}}$ = 70 µrad, such that S_{_{BB}} = 12 σ

• Triplet first (scaled HL-LHC) $\beta^* = 0.3m$, L* = 36m

 $\rightarrow \theta_{_{full}}$ = 70 µrad, such that S_{_{BB}} = 12 σ

• Triplet first (scaled HL-LHC) $\beta^* = 0.3m$, L* = 36m

 $\rightarrow \theta_{full}$ = 70 µrad, such that S_{BB} = 12 σ

 A similar early separation scheme allows to reduce the internal Xing angle (10 Tm D0 at 10m from the IP)

• Triplet first (scaled HL-LHC) $\beta^* = 0.3m$, L* = 36m

 $\rightarrow \theta_{\text{full}}$ = 70 µrad, such that S_{BB} = 12 σ

- A similar early separation scheme allows to reduce the internal Xing angle (10 Tm D0 at 10m from the IP)
- The reversed scheme allows to reduce the external Xing angle

Conclusion

- Small β* is clearly a key for the luminosity performance
 - Adapting β* during the fill with a constant aperture requirements in the triplet offers a significant improvement
- Experimental spectrometers might be used to increase the performance
 - W/o crab cavity an early separation scheme could reduce the geometric reduction factor
 - With crab cavities, the reversed scheme might relax the aperture requirement in the triplet

 \rightarrow The performance gain for both scheme should be quantified

BACKUP Zoom on the drift space

BACKUP Hourglass effect

• Hourglass is relevant for $\beta \sim \sigma_s = 0.08$ m

 \rightarrow Only relevant for configurations with crab cavities

