Review of definitions: n_1 vs σ_n

- During LHC design, normalized apertures calculated in terms of n₁:
 - n₁ defines as the "maximum acceptable primary collimator opening, in units of beam σ, that still provides a protection of the mechanical aperture against losses from secondary beam halo."
 - accounts for closed orbit excursion, mechanical and alignment tolerances and an offmomentum component

Parameter	Value	Unit
Primary halo extension	6	σ
Secondary halo extension, hor./ver.	7.3	σ
Secondary halo extension, radial	8.4	σ
Normalised emittance ϵ_n	3.75	$\mu { m m}$
Radial closed orbit excursion x_{co}	3	mm
Momentum offset δ_p	$8.6 imes 10^{-4}$	_
Fractional beam size change from β -beating k_{β}	1.1	_
Relative parasitic dispersion $f_{\rm arc}$	0.27	-

From CERN-ACC-2014-0044

LHC target design value: $n_1 > 7$

Review of definitions: n_1 vs σ_n

- nl notation very good in design phase, however is not always adequate
- Recent aperture calculation for HL-LHC done directly in units of σ_n instead of n_1 (see CERN-ACC-2014-0044), with revised parameters based on operational experience.
 - n₁ model relies on assumption of secondary halo shape and does not account for tertiary halo or offmomentum halo
 - n1 model not adequate for real cleaning bottleneck: at LHC limiting losses in DS caused by off-momentum particles from single diffractive scattering in TCPs
 - σ_n notation easier to grasp: collimator settings in σ_n (need the real aperture!)

Parameter set	LHC design	HL-LHC design
Primary halo extension	6 σ	6 σ
Secondary halo, hor./ver.	6 σ	6 σ
Secondary halo, radial	6 σ	6 σ
Normalised emittance ϵ_n	3.75 μm	3.5 μ m
Radial closed orbit		
excursion $x_{ m co}$	3 mm	2 mm
Momentum offset δ_r	$96 \times 10-4$	0 10-4
p second second	8.0×10^{-2}	2×10^{-4}
β -beating fractional	8.0 × 10 -	2×10^{-4}
β -beating fractional beam size change k_{β}	8.0 × 10 ⁻¹	2 × 10 ⁻⁴
β -beating fractional beam size change k_{β} Relative parasitic	8.0 × 10 ⁻¹	2 × 10 ⁻⁴ 1.1
β -beating fractional beam size change k_{β} Relative parasitic dispersion $f_{\rm arc}$	8.0 × 10 ⁻¹ 1.1 0.27	2 × 10 ⁻⁴ 1.1 0.1

Parameters used for HL-LHC aperture calculations in units of σ_n

From CERN-ACC-2014-0044

01/06/2015

Collimator settings

- For FCC we are trying to have a consistent notation using real emittance.
- Plan to repeat aperture calculation done for HL-LHC also for FCC
- For the moment, extrapolating from HL-LHC: collimator settings from HL-LHC baseline in σ_n (from CERN-ACC-2014-0044) and equivalent scaled settings for FCC:

HL-LHC ($\epsilon = 3.5 \mu m$)	
ТСР	5.7
TCS	7.7
TCDQ	9.0
ТСТ	10.9
aperture	12.3

FCC-hh ($\epsilon = 2.2 \mu m$)

ТСР	7.2
TCS	9.7
TCDQ	11.4
ТСТ	13.7
aperture	15.5

Same settings as HL-LHC in σ units (for $\epsilon = 3.5 \ \mu$ m), re-expressed in σ units for $\epsilon = 2.2 \ \mu$ m