SPONSORED BY THE

Federal Ministry of Education and Research

Phase advance matching for chromaticity correction for FCC-ee

Bastian Haerer (CERN, Geneva; KIT, Karlsruhe) for the FCC-ee lattice design team

FCC-ee Optics Meeting 05 June 2015

What do we do?

Systematic investigation of chromaticity correction schemes for FCC-ee:

1. Interleaved sextupole scheme using Montague Formalism \rightarrow LEP

- 2. Non-interleaved sextupole scheme
- 3. Independent sextupole pairs

4. Combination of local CCS and arc CC

Chromaticity

Change of the tune with energy deviation

• Textbook:
$$\Delta Q = \xi \cdot \Delta p / p$$

• In our case not precise enough: $(\delta = \Delta p / p)$ $Q(\delta) = Q_0 + \frac{\partial Q}{\partial \delta} \delta + \frac{1}{2} \frac{\partial^2 Q}{\partial \delta^2} \delta^2 + \frac{1}{6} \frac{\partial^3 Q}{\partial \delta^3} \delta^3 + \dots$

FCC-ee Optics Meeting 05 June 2015

Montague functions

Chromatic variables

Rotates with twice the phase advance!

FCC-ee Optics Meeting 05 June 2015

Phase advance FD – 1st Sext.

FCC-ee Optics Meeting 05 June 2015

Phase advance FD – 1st Sext.

FCC-ee Optics Meeting 05 June 2015

FCC-ee sextupole scheme

 $\mu_x = 180^\circ = \pi$ (\rightarrow -I transformation)

Even number of sextupoles per family!

FCC-ee Optics Meeting 05 June 2015

-I transformation

 Sextupoles of each family are in phase

→ W-vector
rotates by 2π

FCC-ee Optics Meeting 05 June 2015

Next steps:

- 1. Compare non-symmetric FODO cell lattice with symmetric FODO cell lattice
- 2. Compare 2 IR 12-fold layout with2 IR baseline layout

FCC-ee Optics Meeting 05 June 2015

1) FODO cells

Non-symmetric FODO cell (V15):

Symmetric FODO cell (V16):

B = bending magnet, Q = quadrupole, S = sextupole

FCC-ee Optics Meeting 05 June 2015

12-fold lattice

Circumference:100 kmArc length:6.8 kmStraight section length:1.5 km

4 mini-beta insertions (IR)!

Objectives:

- One quarter of the ring
- Correct W function with the arcs next to the IPs

IR without local CCS

 $\beta_x(m), \beta_y(m)$

FCC-ee Optics Meeting 05 June 2015

W functions non-symmetric FODO

FCC-ee Optics Meeting 05 June 2015

Hor. W function in first arc

W

FCC-ee Optics Meeting 05 June 2015

Hor. W function in first arc

Ž

FCC-ee Optics Meeting 05 June 2015

Phase mismatch

FCC-ee Optics Meeting 05 June 2015

Matched phase

FCC-ee Optics Meeting 05 June 2015

Hor. W function in the 1st quarter

FCC-ee Optics Meeting 05 June 2015

Both W functions in the 1st quarter

FCC-ee Optics Meeting 05 June 2015

Momentum acceptance

FCC-ee Optics Meeting 05 June 2015

Corrected Chromaticity

	Non-symmetric FODO			Symmetric FODO		
	Nat. Chrom.	Corr. Chrom.	ΔQ (δ=0.05 %)	Nat. Chrom.	Corr. Chrom.	ΔQ (δ=0.05 %)
Q _x	502.16	502.16		506.16	509.08	
Q _x '	-603.80	5.7e-05	2.83e-08	-629.88	-4.20	-2.10e-03
Q_x"	-8.3e+03	3.5e+03	4.41e-04	-1.6e+04	6.6e+03	8.19e-04
Q_,""	-1.4e+08	-5.5e+05	-1.14e-05	-2.7e+08	-1.5e+07	-3.13e-04
Q_,""	-2.1e+12	-8.5e+09	-2.20e-05	-4.1e+12	-2.9e+10	-6.73e-05
Q _y	334.28	334.28		334.28	334.28	
Q _y '	-2044.43	2.8e-01	1.39e-04	-2059.23	6.7e-02	3.36e-05
Q _y "	-8.4e+06	-1.2e+04	-1.53e-03	-8.6e+06	-9.8e+03	-1.22e-03
Q _y ""	-2.0e+11	-3.4e+09	-7.00e-02	2.0e+11	-2.5e+09	-5.11e-02
Q,""	-6.5e+15	3.6e+10	9.25e-05	-6.7e+15	-1.5e+12	-3.92e-03

FCC-ee Optics Meeting 05 June 2015

CERN

FCC-ee Optics Meeting 05 June 2015

FCC-ee Optics Meeting 05 June 2015

W functions: baseline layout

FCC-ee Optics Meeting 05 June 2015

Next steps:

- 1 sextupole and splitted quadrupoles
- 60°/60° and 90°/90° phase advance plus non-interleaved sextupole scheme
- Better targeted higher order correction?
- CC with individual sextupole pairs
- Discussion with BINP colleagues about how to combine the local CCS with the arcs

Phase functions in MAD-X

MAD-X Manual:

MUX Phase function
$$\mu_x = \int ds / \beta_x$$
, $[2\pi]$

PHIX Chromatic phase function $\Phi_x = \arctan(a_x/b_x), [2\pi]$

$$b_x = \frac{1}{\beta_x} \frac{\partial \beta_x}{\partial p_t}, \qquad a_x = \frac{\partial \alpha_x}{\partial p_t} - \frac{\alpha_x}{\beta_x} \frac{\partial \beta_x}{\partial p_t}$$

Which one has to be matched?→ I would guess PHIX...

Chromatic phase

Theoretically PHIX should be twice MUX...

Table 1.3: Comparison of the difference of both the MAD-X phase function μ and the MAD-X chromatic phase function φ between final doublet quadrupole of the respective plane and the first SD sextupole.

	Before optimising $\Delta \mu_x$:	After optimising $\Delta \mu_x$:
$\Delta \mu_x$	4.999999996 +0.125	5.118999996 +0.125
$\Delta \mu_y$	3.00000002	3.00000002
$\Delta arphi_x$	9.021745692 +0.25	9.259497576 +0.25
$\Delta \varphi_y$	6.000035054	6.000078839

\rightarrow Where does the difference come from?

Discussion/Open questions

- Which influence has the working point?
- Matching tolerance/matching order
- Which parameters are worth to compare?
- How could additional sextupoles for higher order correction be added in the arc?
- How is an interleaved sextupole scheme be matched?

