MPP Workshop: Injection System

C. Bracco on behalf of ABT Acknowledgments: STI, ABP, BI,LHC and SPS OP

Outline

- TL steering and IQC
- Injection losses
- LSS6 extraction
- Injection protection collimators (Optics_ID)
- TDI limits
- MKI risetime

TL Steering

 Known issue: different trajectories for fast-PILOT and slow-INDIV/25ns cycles (slower ramp and different magnetization → "different" extraction)

TL Steering

- Known issue: different trajectories for fast-PILOT and slow-INDIV/25ns cycles (slower ramp and different magnetization → "different" extraction)
- GOLDEN trajectory defined with INDIV
- TCDI setup and validation done with PILOT beam
- "Bad" trajectory for PILOT beam in operation
- At the beginning of Run 2 the INDIV beam was on the FAST cycle → almost same trajectory and injection oscillations for both beams (only difference due to BPM sensitivity) → GOLDEN trajectory established with INDIV on FAST → TCDI setup and validation done with this reference
- Moved to INDIV on SLOW beam process → need to steer back to GOLDEN reference and a larger difference (>1mm) between PILOT and INDIV was observed wrt Run 1

Check difference in trajectory at TCDI < 0.5 σ

PILOT Beam vs INDIV

Beam 2	Peak to peak injection oscillations:
Pilot	H = 3.8 mm
	V = 4.1 mm
NDIV	H = 1.3 mm
	V = 0.6 mm

Beam 1 Peak to peak injection oscillations:

- Pilot H = 8.4 mm V = 1.6 mm
- INDIV H = 1.2 mm
 - V = 1.2 mm

PILOT Beam vs INDIV

6 Bunches Injection Beam 1

6 Bunches Injection Beam 2

Bend Repaired in TI8

- From LHCOP logbook 03/06/2015 14:41:
 - SPS: bend repaired in TI8. **RBI** in TI8 changed by 4 A*. To be checked next injections.

Injectior	n Beam 1			Inject	ion Beam 2	
6-05 18:15:09.085: Beam inj	ected! BLM ana	lysis was bad. Moo	dules are maske	ed.		
EXTRACTI INJECTION KICK	BEAM LOSS	RF BUCKETS	INJ.C			
06-05 18:15:09.101: Beam lo	sses above thre	sholds.	🗆 Sta	art loo	sing ir	ו IR7
Monitor name	Max loss	IQC applied	IC		00	
MBI.33L8.B0T10_MBA-MBB	23.7240	0.0	0.0	7.7149	1.0000	307.51%
MBI.34L8.B0T10_MBB-MBA	23.7240	0.0	0.0	7.7149	1.0000	307.51%
ITI.06R7.B2I10_TCP.C6R7.B2	0.2682	0.0	0.0	9.2672	1.0000	2.89%
TI.06R7.B2I10_TCP.B6R7.B2	0.1626	0.0	0.0	9.2672	1.0000	1.75%
TI.06R7.B2I10_TCP.D6R7.B2	0.1618	0.0	0.0	9.2672	1.0000	1.75%
BLMQI.32L8.B2I30_MQ	0.0927	0.0	0.0	7.7149	1.0000 <	1.20%
BLMQI.32L8.B2110_MQ	0.0927	0.0	0.0	7.7149	1.0000	1.20%
BLMQI.33L8.B2I30_MQ	0.0927	0.0	0.0	7.7149	1.0000	1.20%
BLMOI.33L8.B2110_MO	0.0927	00	0.0	7 7149	1 0000	1.20%
lot Per slot Per BLM						
+	+					
10	č* *			*	****** 🔒 🖌	
				*		.20%
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		1.1.000		h		
300 320	340	360	380	400	420	440
			monitors			
essful! The Gy factor	was 3.62E-9					
LSA references Set references	Read reference	es from a file Wri	te references to file	Slot: 0 × Se	lect slot	find:

To be further investigated!!

* Intervention on Acquisition card to correct a 4 A offset (0.04%) between the DAQ and the Power converters to solve a FEI issue

Injection Losses: LIC vs IC

- Only up to 6 bunches injected → low intensity and statistics!
- Mainly LIC+Big filters installed instead of the SEM
- IC+Small filters preferred in the injection region in view of possible need to blind most critical BLMs (removing filter!)

														±
				\wedge									\cap	
BLMQI.A9L2	BLMQI.08L2.B2I30_MQML	UJ22	HCBLM_1001-05003083		HCBLM_1001-05003083	BJBAP.C8L2_1	BJBAP.C8L2 U	1	Not Installed		3022.6704 BLMQI.08L2.B2I30_MQML	no	1 / IC+SF	BJBAP.C8L2
BLMQI.F8L2	BLMQI.08L2.B1E10_MQML	UJ22	HCBLM_1001-05003060		HCBLM_1001-05003060	BJBAP.C8L2_2	BJBAP.C8L2 U	1	Installed small	I 2200	150 3025.7604 BLMQI.08L2.B1E10_MQML	blind	1 IC+SF	BJSAP.B8L2, rename
BLMQI.E8L2	BLMQI.08L2.B2I20_MQML	UJ22	HCBLM_1001-05003956	IC	HCBLM_1001-05003956	BJBAP.C8L2_3	BJBAP.C8L2 U	1	Not Installed		3027.0434 BLMQI.08L2.B2I20_MQML	no	1 IC+SF	BJBAP.C8L2
BLMQI.D8L2	BLMQI.08L2.B1E20_MQML	UJ22	HCBLM_1001-05003006	IC	HCBLM_1001-05003006	BJBAP.C8L2_4	BJBAP.C8L2 U	1	Installed small	1 2200	150 3028.2434 BLMQI.08L2.B1E20_MQML	blind	I IC+SF	BJSAP.B8L2, rename
BLMQL.A8L2	BLMQL.08L2.B2I10_MQML	UJ22		0.4 LIC		BJBAP.C8L2_5	BJBAP.C8L2 U	1	Not Installed		3030.4154 BLMQL.08L2.B2I10_MQML	no	1 LIC	BJBAP.C8L2
BLMQI.B8L2	BLMQI.08L2.B1E30_MQML	UJ22	HCBLM_1001-05003333	IC	HCBLM_1001-05003333	BJBAP.C8L2_6	BJBAP.C8L2 U	1	Installed small	I 2200	150 3032.9154 BLMQI.08L2.B1E30_MQML	blind	1 IC+SF	BJSAP.B8L2, rename
BLMEI.F8L2	BLMEI.08L2.B2I23_MBA	UJ22	HCBLM_1001-05003936	IC	HCBLM_1001-05003936	BJBAP.A8L2_1	BJBAP.A8L2 U	1	Not Installed		3035.0854 BLMEI.08L2.B2I23_MBA	no	1 IC	BJBAP.A8L2
BLMES.F8L2	BLMES.08L2.B2I23_MBA	UJ22	HCBLM_S001-05000337	SEM	HCBLM_S001-05000337	BJSAP.B8L2_1	BJSAP.B8L2 M	0	Not Installed		3035.0854 BLMEL.08L2.B2I23_MBA	no	0 LIC+BF	BJBAP.A8L2
BLMEI.E8L2	BLMEI.08L2.B2I22_MBA	UJ22	HCBLM_1001-05003094	IC	HCBLM_1001-05003094	BJBAP.A8L2_2	BJBAP.A8L2 U	1	Not Installed		3038.7354 BLMEI.08L2.B2I22_MBA	no	1 IC	BJBAP.A8L2
BLMES.E8L2	BLMES.08L2.B2I22_MBA	UJ22	HCBLM_S001-05000232	SEM	HCBLM_S001-05000232	BJSAP.B8L2_2	BJSAP.B8L2 M	0	Not Installed		3038.7354 BLMEL.08L2.B2I22_MBA	blind	0 LIC+BF	BJSAP.B8L2, rename
BLMEI.D8L2	BLMEI.08L2.B2I21_MBA	UJ22	HCBLM_1001-05003948	IC	HCBLM_1001-05003948	BJBAP.A8L2_3	BJBAP.A8L2 U	1	Not Installed		3042.1754 BLMEI.08L2.B2I21_MBA	no	1 IC	BJBAP.A8L2
BLMES.D8L2	BLMES.08L2.B2I21_MBA	UJ22	HCBLM_S001-05000327	SEM	HCBLM_S001-05000327	BJSAP.B8L2_3	BJSAP.B8L2 M	0	Not Installed		3042.1754 BLMEL.08L2.B2I21_MBA	blind	0 LIC+BF	BJSAP.B8L2, rename
BLMEI.C8L2	BLME1.08L2.B2130_MBB	UJ22	HCBLM_1001-05003082	IC	HCBLM_1001-05003082	BJBAP.A8L2_4	BJBAP.A8L2 U	1	Not Installed		3046.0354 BLME1.08L2.B2I30_MBB	no	1 IC	BJBAP.A8L2
BLMES.C8L2	BLMES.08L2.B2I30_MBB	UJ22	HCBLM_S001-05000235	SEM	HCBLM_S001-05000235	BJSAP.B8L2_4	BJSAP.B8L2 M	0	Not Installed		3046.0354 BLMEL.08L2.B2I30_MBB	blind	0 LIC+BF	BJSAP.B8L2, rename
BLMEI.B8L2	BLMEI.08L2.B2I22_MBB	UJ23	HCBLM_1001-05003931	IC	HCBLM_1001-05003931	BJBAP.A8L2_5	BJBAP.A8L2 U	1	Not Installed		3051.4954 BLMEI.08L2.B2I22_MBB	no	1 IC	BJBAP.A8L2
BLMES.B8L2	BLMES.08L2.B2I22_MBB	UJ23	HCBLM_S001-05000354	SEM	HCBLM_S001-05000354	BJSAP.B8L2_5	BJSAP.B8L2 M	0	Not Installed		3051.4954 BLMEL.08L2.B2I22_MBB	blind	0 LIC+BF	BJSAP.B8L2, rename
BLMEI.A8L2	BLMEI.08L2.B2I21_MBB	UJ23	HCBLM_1001-05003426	IC	HCBLM_1001-05003426	BJBAP.A8L2_6	BJBAP.A8L2 U	1	Not Installed		3056.6954 BLMEI.08L2.B2I21_MBB	no	1 IC	BJBAP.A8L2
BLMES.A8L2	BLMES.08L2.B2I21_MBB	UJ23	HCBLM_S001-05000303	SEM	HCBLM_S001-05000303	BJSAP.B8L2_6	BJSAP.B8L2 M	0	Not Installed		3056.6954 BLMEL.08L2.B2I21_MBB	blind	0 LIC+BF	BJSAP.B8L2, rename
BLMQI.A8L2	BLMQ1.07L2.B2130_MQM	UJ23	HCBLM_1001-05003986	IC	HCBLM_1001-05003986	BJBAP.A7L2_1	BJBAP.A7L2 M	1	Not Installed		3061.6954 BLMQI.07L2.B2I30_MQM	no	1 IC	BJBAP.A7L2
BLMQI.F7L2	BLMQI.07L2.B1E10_MQM	RH23	HCBLM_1001-05003057	IC	HCBLM_1001-05003057	BJBAP.A7L2_2	BJBAP.A7L2 M	1	Installed small	I 2200	150 3064.8254 BLMQI.07L2.B1E10_MQM	no	1 IC+SF	BJBAP.A7L2
BLMQI.E7L2	BLMQ1.07L2.B2120_MQM	RH23	HCBLM_1001-05003942	IC	HCBLM_1001-05003942	BJBAP.A7L2_3	BJBAP.A7L2 M	1	Not Installed		3067.2489 BLMQI.07L2.B2I20_MQM	no	L IC	BJBAP.A7L2
BLMQI.D7L2	BLMQI.07L2.B1E20_MQM	RH23	HCBLM_1001-05003034	IC	HCBLM_1001-05003034	BJBAP.A7L2_4	BJBAP.A7L2 M	1	Installed small	I 2200	150 3068.4489 move to MB interconnect cell 8	no	1 IC+SF	BJBAP.A7L2
BLMQI.C7L2	BLMQI.07L2.B2I10_MQM	RH23	HCBLM_1001-05003363		HCBLM_1001-05003363	BJBAP.A7L2_5	BJBAP.A7L2 M	1	Not Installed		3071.8154 BLMQI.07L2.B2I10_MQM	no	1 IC	BJBAP.A7L2
BLMQI.B7L2	BLMQI.07L2.B1E30_MQM	RH23	HCBLM_1001-05003038		HCBLM_1001-05003038	BJBAP.A7L2_6	BJBAP.A7L2 M	1	Installed small	I 2200	150 3075.3654 BLMQI.07L2.B1E30_MQM	blind	1 IC+SF	BJBAP.A6L2
-				$\overline{\mathbf{V}}$							-		\cup	

Aftor IS1

Before LS1

- High losses when extracting HiRadMat beam (12 bunches)
- Found out:
 - Not optimum delay between Beam and MKE pulse (40 instead of 38.5 μ s) \rightarrow corrected
 - Drift of the orbit at the extraction point by 2.5 mm → corrected and extraction bump from 40 mm to 42 mm

- High losses when extracting HiRadMat beam (12 bunches)
- Found out:
 - Not optimum delay between Beam and MKE pulse (40 instead of 38.5 μ s) \rightarrow corrected
 - Drift of the orbit at the extraction point by 2.5 mm → corrected and extraction bump from 40 mm to 42 mm
- This did not solve the extraction problem and we realised that losses were only present for nominal bunch on LHC25ns cycle but not on PILOT cycle
 - Measure extraction aperture for both cycles \rightarrow no difference
 - Measured MKE delay for both cycles → no difference

- High losses when extracting HiRadMat beam (12 bunches)
- Found out:
 - Not optimum delay between Beam and MKE pulse (40 instead of 38.5 μ s) \rightarrow corrected
 - Drift of the orbit at the extraction point by 2.5 mm → corrected and extraction bump from 40 mm to 42 mm
- This did not solve the extraction problem and we realised that losses were only present for nominal bunch on LHC25ns cycle but not on PILOT cycle
 - Measure extraction aperture for both cycles \rightarrow no difference
 - Measured MKE delay for both cycles → no difference
- Found out that main problems:
 - LHC25ns was not fully set up: uncaptured beam kicked out by longer rise time of MKE6 wrt MKE4→ corrected
 - The MKP generators not properly adjusted and 250 ns rise time not yet possible → not possible to extract 4 batches on the LSS6 flattop waveform (too short: 8 us) → possible to increase MKE6 flattop during Xmas stop (also in view of 80 bunches and BCMS)
 - HiRadMat beam-MKE synchronization → corrected

- High losses when extracting HiRadMat beam (12 bunches)
- Found out:
 - Not optimum delay between Beam and MKE pulse (40 instead of 38.5 μ s) \rightarrow corrected
 - Drift of the orbit at the extraction point by 2.5 mm → corrected and extraction bump from 40 mm to 42 mm
- This did not solve the extraction problem and we realised that losses were only present for nominal bunch on LHC25ns cycle but not on PILOT cycle
 - Measure extraction aperture for both cycles \rightarrow no q
 - Measured MKE delay for both cycles \rightarrow no difference
- Found out that main problems:
 - LHC25ns was not fully set up: uncaptured beam kick corrected
 - The MKP generators not properly adjusted and 250
 extract 4 batches on the LSS6 flattop waveform (too during Xmas stop (also in view of 80 bunches and BC)
 - HiRadMat beam-MKE synchronization → corrected

- Orbit drifts at extraction point are still a non fully understood issue → strong impact on TL stability (BPCE resolution not enough for fine interlock)
- Possible solution: beam position at BPCE extrapolated from SPS orbit in IQC → monitor orbit drift and improve TL and injection diagnostics in case of problems

Injection Protection Collimators

- TDI, TCLIA/B and TCDI are set up and fully validated
- Now straightforward procedures for setup and validation
- Effective time (**PROVIDED BEAM AVAILABILITY**) reduced from 1 shift per TL down to 3 hours
- "Position" and "Energy" **dump thresholds set up** to:
 - TDI and TCLIA/B: position±0.25 σ , gap+1 σ
 - TCDI: position±0.5 σ , gap+1 σ
- TDI BETS interlock thresholds set to gap $\pm 1.5\sigma$

Optics ID for TCDI

- Aim: check the **TL optics** and verify that **TCDI settings** are correct for that optics
- Proposed to adapt β^* interlock used for the ring collimators:
 - All/some **TL guad currents** defined as critical settings in LSA V
 - Associate a unique ID V
 - Distribute it through timing system V •
 - Define TCDI thresholds and specifications X
 - Control implementation X

The FESA class has to be modified: a new "Active IP" has to be added which checks the **OIDTI2/8** telegram instead of the BSTAR1/2/5/8 telegram \rightarrow impact on ring collimators **→** repeat MP checks also for them! Not ready to be implemented in TS1

Timing editor							_ 🗆 🕽	
RBA: cbracc	:0							
Edit timing table 🕺 🕅	MTG configuratio	on Edit/monitor t	elegram - se	end en event	XTIM monitoring			
					TELEGRAM MO	NITORING		
SET 1	FELEGRAN	1 GROUPS						
				GROUP	DESCRIPTION	VALUE		
TGM GROUPS	SE	ECTACC	-	AMODE	Machine mode	PROTPHYS		
				BKNI	Next injection RF bucket	29991		
		set		BMODE	What the LHC is doing	SETUP		
			_	BPNM	Basic Period Number	26812		
				BSTAR1	Squezing factors: 16bits, res=0,01m/bit	559		
				BSTAR2	Squezing factors: 16bits, res=0,01m/bit	1000		
				BSTAR5	Squezing factors: 16bits, res=0,01m/bit	501		
				BSTAR8	Squezing factors: 16bits, res=0,01m/bit	1000		
				ENG	Beam energy (x120 Mev)	59.28		
				FILLN	Fill number	3848		
				FREE28	Not used	0		
				FREE29	Not used	0		
				INT1	Beam intensity - Ring 1 (x10E10 charges)	0		
				INT2	Beam intensity - Ring 2 (x10E10 charges)	0		
				LVELIR	Leveling: Luminosity adjustment			
				NIBIN	Next injected bunch intensity	150	150	
9	SEND AN E	VENT		NIBNCH	Next injected number of bunches	4		
				NIBSP	Next injected bunch spacing	o		
				NIPTY	Next injected particle type	1		
Select Event			SEND	OIDTI2	Optic ID for TI2	2087		
				OIDTI8	Optic ID for TI8	2088		
				OMODE	Operational mode			
cond STADT TADI E	ouent	with novload		OPTID	Beam optics identifier	2728		
Send START TABLE	event	with payload		PARTY1	Ring 1: Particle type	PROTON		
				PARTY2	Ring 2: Particle type	PROTON		
Send inj	forewarning eve	ent in test mode		PP60A	Power permit 60 Amps	ARC12 ARC23	ARC34 ARC45 ARC56 ARC67 ARC78	
				RNGI	Next injection ring	RING_1		
				SECTACC	Sector access			
				SMP	Safe machine parameters - Ring 1 and 2	SAFE1 SAFE2	-	
				SPCON	Specific conditions			
				USER	LHC user	LHC		

Missing Optics ID Critical for High Intensity?

- TCDI settings (aperture) depend on the TL optics
- In the past when changing from Q26 to Q20 optics it was not caught that the optics change was affecting the region were TL collimators are \rightarrow one TCDI with gap larger than 5 $\sigma \rightarrow$ poorer protection
- Now system setup, validated and reference defined → protection for injection of high intensity beam is granted (other checks are performed and prevent extraction if magnet currents are wrong).
- Still important to implement this interlock in view of future possible optics changes. When? TS or Xmas stop? It has to be defined which MP checks have to be repeated: all? Only β*? For all ring collimators or a sample?

TDI Limits

TDI hBN block cannot withstand temperatures higher than 450 °C (B₂O₃ reactant melting temperature) → limit the maximum number of bunches which can hit the TDI (maximum allowed temperature = 400 °C)

Beamstor	Bundilbo	pletiment	are turn	adi anto ante	species Insect per particular species poster particular species poster particular species per particular species p	idi 2batdres	3 batches	Abatotes	
					72 (1.8 usec)	144 (3.8 usec)	216 (5.8 usec)	288 (7.8 usec)	ĺ
Standard 25 nsec	1.20E+11	2.6	25	72	206 deg C	352 deg C	483 deg C	606 deg C	
					48 (1.2 usec)	96 (2.6 usec)	144 (4.0 usec)		
BCMS	1.30E+11	1.3	25	48	239 deg C	408 deg C	560 deg C		
					36 (1.8 usec)	72 (3.8 usec)	108 (5.8 usec)	144 (7.8 usec)	
50 nsec	1.20E+11	1.5	50	36	160 deg C	277 deg C	378 deg C	473 deg C	
					72 (1.8 usec)	144 (3.8 usec)			
Doublet(*)	1.60E+11	4	25	72	212 deg C	363 deg C			📋 J. Uythoven & A. Lechner

TDI Limits

- TDI hBN block cannot withstand temperatures higher than 450 °C (B₂O₃ reactant melting temperature) → limit the maximum number of bunches which can hit the TDI (maximum allowed temperature = 400 °C)
- Consequences:
 - Limit number of injected bunches
 - Increase number of injection
 - Limit maximum number of circulating bunches (maximum reachable with 25 ns beam: 2448 instead of 2736, B. Gorini LMC 13/05/2015)
- How to insure that no more than 144 bunches hit the TDI when operating with 25 ns beam?
 - Reduce length of injection kicker to 3.8 µs (erratic on circulating beam)
 - Reduce length of the SPS flat-bottom of LHC cycle
- A new TDI with graphite instead of hBN will be installed during the next Xmas stop.

TDI Limits

- TDI hBN block cannot withstand temperatures higher than 450 °C (B₂O₃ reactant melting temperature) → limit the maximum number of bunches which can hit the TDI (maximum allowed temperature = 400 °C)
- Consequences:
 - Limit number of injected bunches
 - Increase number of injection
 - Limit maximum number of circulating bunches (maximum reachable with 25 ns beam: 2448 instead of 2736, B. Gorini LMC 13/05/2015)
- How to insure that no more than 144 bunches hit the TDI when operating with 25 ns beam?
 - Reduce length of injection kicker to 3.8 µs (erratic on circulating beam)
 - Reduce length of the SPS flat-bottom of LHC cycle
- A new TDI with graphite instead of hBN will be installed

Critical topic: flip between 25 ns and 50 ns configuration!

MKI Waveform

- Measured an **MKI rise time**, both in IR2 and IR8, **longer than nominal** (1.2 μ s instead of 0.9 μ s) and thus a shorter flattop (possible to adjust)
- The number of the MS end turns were increased in April 2010 from 8.25 to 8.75 to reduce the overshoot
- Wrt to LS1 the TMR resistance is reduced and the number of screen conductors increased → undershoot
- New calculations were done taking into account all these effects and the **optimum number of MS end turns calculated** (7.25)
- This change will be implemented during TS1
- A new waveform scan will have to be performed

Summary

- Large difference between PILOT and INDIV/25ns → bad trajectories and injection oscillations for PILOT (used to set up the LHC): Not critical for MP but not ideal for operation. Proposal: put PILOT on SLOW cycle
- Injection losses of the same order of Run 1 (only 6 bunches injected!). Still too low intensity to draw conclusions about LIC and need of BLM blinding.
- Large trajectory drift in H plane after fixing a DAQ problem for TI 8 bends. Not critical for MP, no increase in injection losses (but losses appearing in IR7) and possible to steer on injection oscillations. Not reassuring for operation: GOLDEN reference could be no more valid if this happens again!
- Orbit drifts of few mm affect the SPS extraction point and have a big impact on TL stability. Not critical for MP but frequent steering is expected to be needed. Proposal: monitor losses and orbit drifts in IQC to improve diagnostics (possible future interlock on next extraction)
- All injection protection collimators set up and validated. Optics_ID for TCDI not yet in place (need to modify FESA class and revalidation also for ring collimators). Not critical for MP since needed only in case of optics change.
- TDI hBN block fragility limits the number of injected (and circulating) bunches. Critical for MP since an adequate strategy has to be put in place to insure the correct flip between 25 ns and 50 ns settings (MKI pulse and SPS flat-bottom length)
- MKI rise time will be restored to its nominal value after TS1, to be checked with measurements.

Ready to start with high intensity beams with some care!

Thanks a lot for your attention!

TL Comparison

Before RBI change

After RBI change

Real 4 A Current Change?

Proposal for TCDI Threshold Tables

Optics_ID	GU_IN [mm]	GD_IN [mm]	GU_OUT [mm]	GD_OUT [mm]
2086.9	9.5	9.5	10.5	10.5
2087	9.5	9.5	10.5	10.5
2087.1	9.5	9.5	10.5	10.5

Optics_ID	GU_IN [mm]	GD_IN [mm]	GU_OUT [mm]	GD_OUT [mm]
2087.9	9.5	9.5	10.5	10.5
2088	9.5	9.5	10.5	10.5
2088.1	9.5	9.5	10.5	10.5

For simplicity it is assumed $1 \sigma = 1 \text{ mm}$ (thresholds = gap +/-0.5 σ)