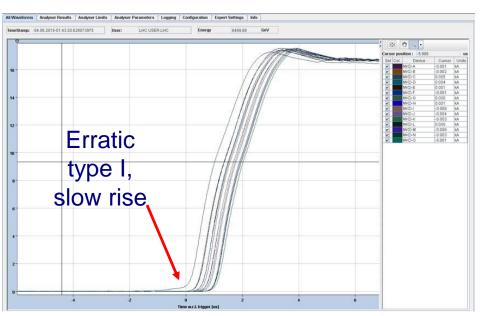
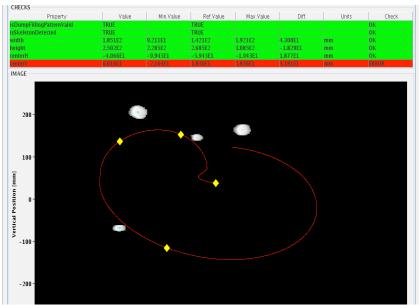
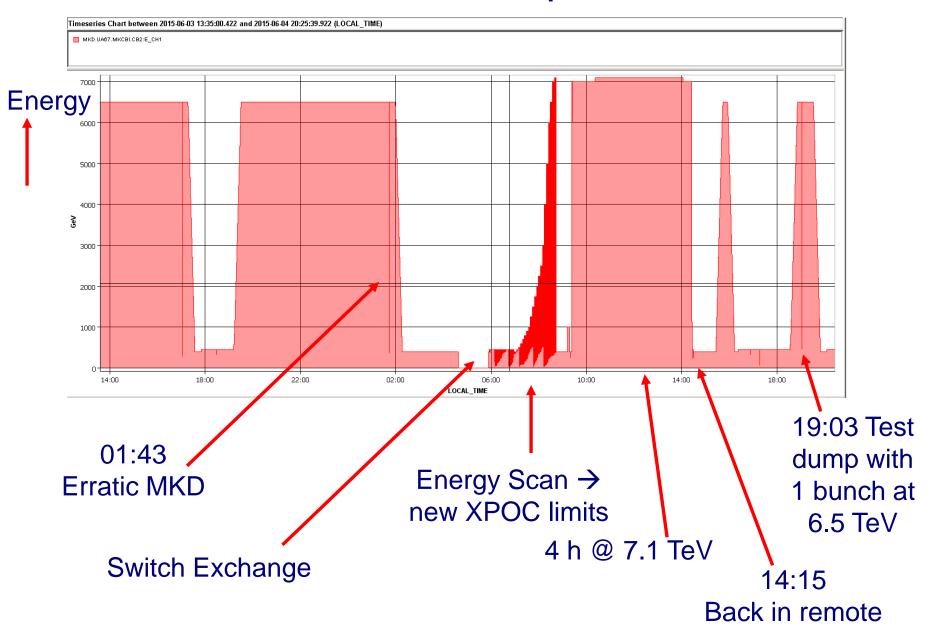
Beam Dumping System MPP review 12/06/2015


Jan Uythoven for the ABT team


Overview

- Erratics and other worries
 - □ MKD erratic
 - □ MKB erratics
- New after LS1
- Outstanding tests
 - □ What is left
 - □ When should they be done
- Are we ready?

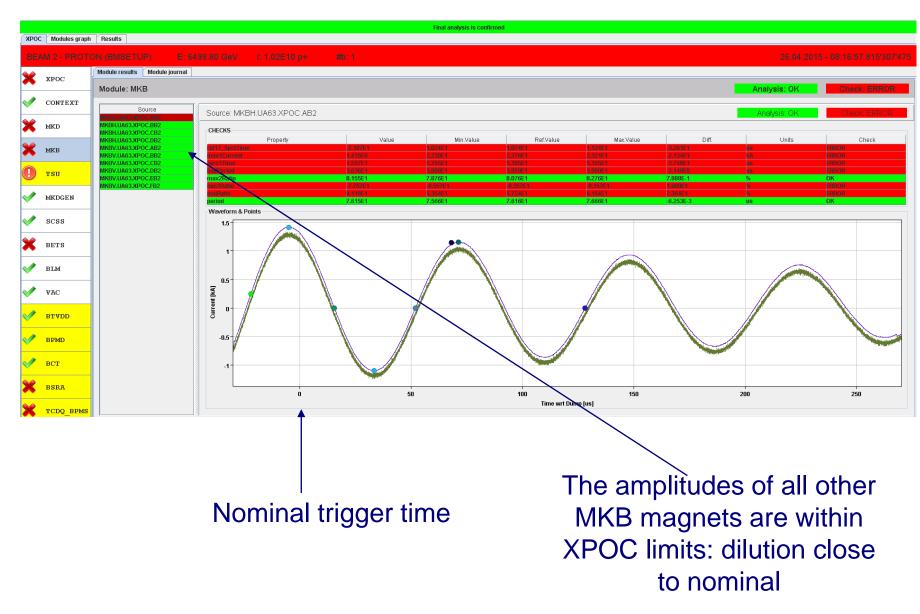
MKD Erratic


- One so far on 4/6/2015
 - □ The first asynchronous beam dump of the 3/year/beam announced
 - □ All detection and redundancy worked correctly
 - □ 400 ns needed to re-trigger the adjacent generators
- Replaced switch and tests following procedures
 - □ If tests would not have been successful → replacement of MKD generator
- No beam in the abort gap → no beam losses

No beam in the gap

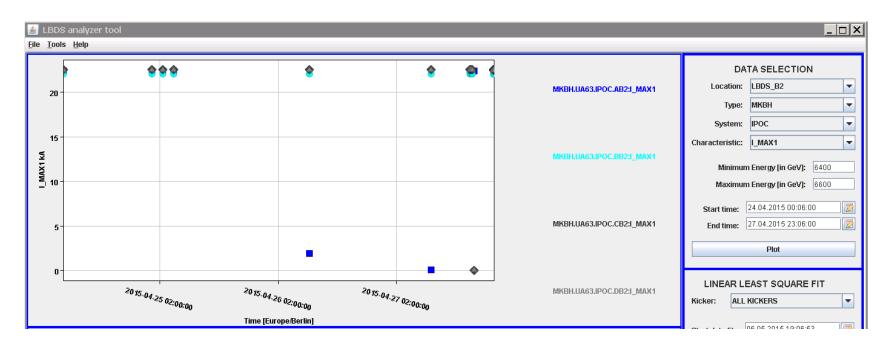
MKD erratic: the Sequence

MKD Erratic: Remaining Issues


- MKD switch dismounted in the lab. Found space between insulators not completely filled with silicon grease – non conformity during mounting
- This time lucky as no beam in the abort gap (and little beam in the machine)
- Reference losses on the TCDS and TCDQ have been measured and to be repeated in case of serious losses during an asynchronous beam dump
 - □ Check on integrity of absorber blocks etc.
 - □ Results of reference measurements to be written down and made easily accessible so checks can also be made in case of absence of experts
- Simulations with FLUKA / ANSYS of absorbers for "new"
 Type 2 erratic, also for BCMS beams (collaboration collimation team)

MKB Erratics: 3x, 1 exchange

- Lead to a synchronous beam dump
 - □ No risk of quenching magnets etc...
- **26/04/15 08:23:04.594**
 - □ LBDS dilution kicker MKBH erratic trigger at 6.5 TeV
 - ☐ Caused synchronous beam dump, as it should
- **27/04/15 09:00:31.239**
 - □ Second erratic on the same MKBH kicker magnet at 6.5 TeV
 - □ Also synchronous dump
- **27/04/15 11:39**
 - □ LHC stopped for MKBH switch replacement
 - □ 18:10 access finished
- **28/04/15 01:41**
 - System operational again
- **31/05/15 00:56:36**
 - □ Erratic on replaced MKB switch inspection shows piece of glove from previous switch replacement



MKB in XPOC

Small amplitude

- Dump actually triggered by BETS surveillance of MKB.
- Slow reaction time of order of 1 ms, resulting in small amplitude of MKB where erratic took place
 - □ So limited impact when in anti-phase with another MKB

Procedure switch replacement

Procedure

- ☐ If two MKB erratics < 4 weeks: exchange the switch
 - For extraction kicker MKD this is after one single erratic, as for the MKD this is an asynchronous dump
- □ Controls tests
- □ HV tests
- ☐ Energy scan (check XPOC, IPOC limits, energy tracking etc.)
- □ Run at 7.1 TeV for 4 hours in local
 - If this would not have been successful, then complete generator would have been changed.

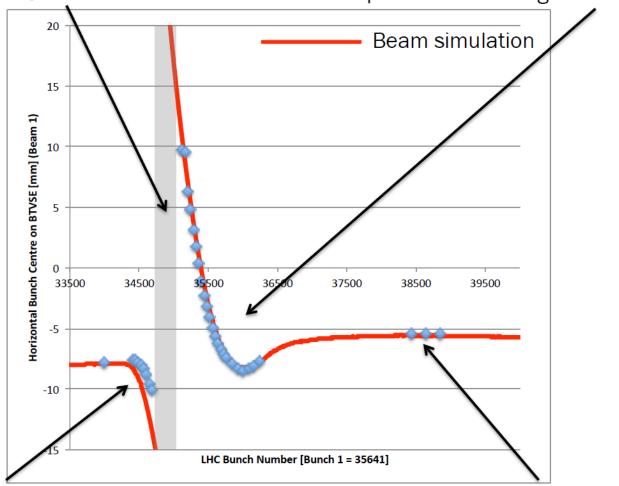
Diagnostics of the switch

- □ Noticed in the tunnel that switch was rather dirty: dust etc. Like noticed for the MKD switches → will be cleaned during TS1
- □ Back in the laboratory switch HV tested, initially very high spark rate, conditioned away to normal rate
- □ Dismounted in the lab, nothing abnormal found

Conclusions on MKD & MKB switch erratics

- All protection / re-triggering worked as expected
- The number is still acceptable
- In 2 out of 3 cases the erratic was related to non conformities of the installed switches
 - Working on detailed procedures for installation but not completely finished
 - Should include checklist to be ticked off and signed
 - □ Upgrade of MKD switches foreseen for LS2 to make the installation less critical (reduce max electrical fields), to be presented in TE-TM in the coming weeks. Possibly tests of few of them in the machine before LS2.
- The procedures for switch replacement seems to be effective and was followed twice
 - □ Now this procedure to be put in edms, to make it official
- Reference losses TCDS and TCDQ also to be officially written down so can be done by non-specialists
- This TS1:
 - □ Clean the MKB switches (without demounting)
 - □ Endoscope inspection of the most critical MKD switches which had marks on the insulators. Third inspection of same switches to check on any changes

New Run 2


- (BETS) TCDQ
 - □ New and longer TCDQ well aligned and set-up
 - □ BETS on TCDQ new for Run 2
 - Problems with arming / interlocking during commissioning when TCDQ functions were not used / available
 - Arming sequence modified
 - Given reset rights to OP
 - Justified as the interlocking is on an actual position (compared to XPOC where the system has to work on command)
- CIBDS see later
- MKD waveform measured for the first time, looks good!

MKD waveform measurement @ 450 GeV

Matthew Fraser

Either lost on TCDQ or misses BTV area:

Top of MKD rise: single kick to TD68.

Start of MKD rise: seen after one extra turn in the LHC.

MKD 100% level

MKD waveform measurement

For the rise-time:

a. Beam 1 we measure roughly:

0 % to 100 % =
$$(35592 - 34441)/10$$
 bunches = $115.1*25$ ns = $2.88 \mu s$

(0%: nearest bunch where we detect a change in screen position. The rise-time can be defined as desired but here it's difficult to get an absolute magnitude of the kick, no voltage calibration possible)

b. Beam 2 we measure roughly:

0 % to 100 % =
$$(35650 - 34441)/10$$
 bunches = $120.9*25$ ns = 3.02μ s

Abort gap is 3.0 μs, MKD waveform should be 2.8 μs rise time (definition) and 200 ns margin for timing and synchronisation. Seems rather good.

Outstanding Machine Protection Items

- UPS / powering failures checks B1 not done
 - ☐ Foreseen to be done in TS1 (modified test as cannot arm)
- Redundant PSU surveillance by SIS to be checked
- Direct BLM into LBDS to be tested with beam
 - Should be done soon after TS1
 - □ Check with BI group for step-by-step procedures
- Procedures in case of non-working beam dump (edms #1166480)
 - ☐ To be checked if they are still valid on paper
 - ☐ To be tried out with pilot beam
- Interlock on integrated corrector settings (energy) and ∆f_{rf}
- Filling pattern still manually edited → problem XPOC
- Some XPOC modules can be reset by OP and shouldn't
- Abort gap cleaning at 6.5 TeV remains to be commissioned
- BSRA about working but not always ...
 - □ Automatic abort gap cleaning via SIS to be commissioned
- Interlocked BPMS non-conformities (see presentation Thibaut)

CIBDS

- New link between BIS and LBDS not using the TSU
- Seems to be working correctly
- However, automatic check at every XPOC remains to be deployed

MPS check filled in, basically OK. Should adapt some of the tests to actual situation

Conclusions – Are we Ready?

- I think YES
- No system faults or unexpected malfunction detected
- Erratics are the main worry, but still within expectation and are not dangerous for the machine as such
 - □ High rate was expected from reliability run with new top energy: reliability run was EXTREMELY useful
 - □ Some checks on MKB and MKD generators foreseen in TS1
 - □ LS2 upgrade of MKD generators being worked on
- Some tests and developments are outstanding, minor none conformities to be fixed
 - Should have priority during the intensity ramp up in the coming weeks, so they can be closed before the summer holidays