

www.cern.ch

Status Report on the start-up activities (injectors and LHC) and outlook Council Frédérick Bordry 18th June 2015

PS Booster: Fixed-Target Beams June 2015

ISOLDE beams	status
NORMGPS	OK up to ~3.6 10 ¹³ ppp
NORMHRS	OK up to ~3.6 10 ¹³ ppp
STAGISO	OK in specs

Fixed target beams	status
EAST	OK in specs
SFTPRO	OK in specs
TOF	OK in specs
AD	OK in specs

> good progress made in pushing ISOLDE intensity

HIE-ISOLDE cryo-module status

"Cryomodule of HIE Isolde is in nominal cryo conditions" (17th June 2015)

PS Booster: LHC-type and Scrubbing Beams - June 2015

LHC type beams	status
LHC 25ns DB	OK in specs
LHC 50ns DB	OK in specs
BCMS 25ns DB	OK in specs
LHCPROBE	OK in specs
LHCINDIV	OK in specs
LHCF_INDIV	OK in specs
scrubbing beams	status
high-intensity 25 ns	OK in specs
high-intensity BCMS	OK in specs
high-intensity doublet	being checked

Scrubbing beams successfully delivered to SPS

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Courtesy Klaus Hanke

- The 2014 run allowed to fully recover following all modifications made during LS1
- PS is in a good shape to deliver the LHC beams, but also the fixed target beams

Good progress for the nTOF beam (09-06-2015)

Planned Integrated Intensity for the 2015 nTOF Run

- Planned integrated proton intensity on target: 4.15x10¹⁸.
- Achieved integrated proton intensity on target: 4.06x10¹⁸.
- This is 98% w.r.t. scheduled and 24% of the total forecasted for 2015

PS : Intense Machine Development Program

- LHC Injector Upgrade Studies
 - Space charge studies
 - LHC beam performance studies
- Preparation scrubbing runs in SPS and LHC
 - Special doublet beam developed
- Commissioning Multi-turn Extraction (MTE) for SPS fixed target beam
 - Optimises the PS machine performance also for operational beams
 - Reduces PS radiation levels

SPS: Fixed-Target Beams

Fixed target

- ▶ Stable running with 2 10¹³ p/cycle, 85% availability
- New spill control gives better stability for TT20 steering.
- ▶ NA62 will start on June 22nd.

SPS: LHC-type and Scrubbing Beams

► LHC

- Pilot, Indiv, and 50nsec (6 bunches of 1.2 10¹¹ protons, 1.6 μm emittance) injected in LHC.
- Nominal 25 nsec 1.2 10¹¹, 3 μm emittance is ready and was used by HiRadMat.
- Doublet beam : Train of 12 bunches extracted to first TED.

Doublet beam on screen infront of TEDin TT60

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Courtesy Karel Cornelis

The LHC powering tests overview

Since September 15th 2014:

1566 superconducting circuits commissioned through execution and analysis of **more than 10.000 test steps** (~13.800 test steps including re-execution)

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Powering tests were completed at 8 am on Friday 3rd April 2015

Dipole Training Campaign

Each Sector Trained to 6.55TeV (11080A) (100 A above the operational field)

Sector	# Training q <u>uenc</u> h	Flattop quenches
S12	7	0
S23	17	0
S34	15	1
S45	51	0
S56	18	3
S67	22	1
S78	19	3
S81	29	0
Total	171	8

Large variation in number of training quenches per sector

Detailed Analysis in Progress!

Metal chips and pieces found in the past

One week of intense preparation

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Courtesy Andrzej Siemko

Discharge Set-Up

How it worked ?

and 11ms instead of 2 month (10 days of thinking and preparation)

Discharge time:~11.5msDischarge voltage:906V to 578VDissipated energy:~1.5kJBalancing resistors:2x10hmShort resistance:~1 0hmEnergy dissipated in short:~500J

Beam dump system: Dry Runs

Frédérick Bordry 18th June 201<u>5</u>

Final Preparations: Cold Checkout

First Cycle of the Complete Machine

Beam Interlock Loop Closed

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

... all ready on Saturday 4th April

Vacuum Valves Open

First circulating beams in LHC on Easter Sunday 5th April 2015

First beamS at 6.5 TeV! (12th April)

Beam Commissioning

Beam Commissioning Roadmap

System commissioning with beam

- Collimation
- Beam dump
- Feedbacks
- Beam instrumentation
- Machine protection
- ► RF
- Transverse damper
- Injection

Machine characterization

- Optics measurement and correction
- Magnetic machine

Operations

- High intensity injection
- Ramp to 6.5 TeV
- First squeeze tests
- Debugging
- Squeeze
- Collision

Collide & validation

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Courtesy Mike Lamont

First stable beams in LHC: 3rd June 2015

LHC experiments are back in business at a new record energy **13 TeV** 3rd June 2015

Beam commissioning in two months ③ 13 TeV

► A lot of lessons learnt and experience from Run 1

- Excellent and improved system performance (LS1)
 - Beam Instrumentation
 - Transverse feedback
 - ► RF
 - Collimation
 - Injection and beam dump systems
 - Vacuum
 - Machine protection
- Improved software & analysis tools (LS1)
- Magnetically reproducibility
- Optically good, corrected to excellent
- ► Behaving well at 6.5 TeV
 - One additional training quench so far
- Operationally well under control
 - Injection, ramp, squeeze, de-squeeze

One cloud in the sky: Aperture in 15R8 : MUFO => ULO

Aperture restriction: ♦ Measured at injection and 6.5 TeV

- ♦ UFO stopped after 2nd beam screen warm-up
- Reference orbit is bumped by +1mm in V and -3mm in H at 15R8.
- Probably not a limiting aperture for operation
- ♦ But stability of the object remains a concern

...to come

♦ How does it behave with higher intensities? bunch trains? ...

Still have to face the intensity ramp-up

- UFOs, e-cloud, beam induced heating, instabilities,... especially 25 ns
- ULO (Unidentified Laying Objects)

CMS Cold-Box Contamination Summary of events (1/2)

- CMS refrigerator has been re-started in November 2014 after the LS1 maintenance;
- Mid March first sign of contamination, at that moment blamed on air / water-pollution.
 Procedures applied: sub-system regenerated.
- Beginning of May contamination identified at three different points. *Procedures applied: System stopped, samples taken and complete regeneration*.
- After re-start of system almost immediate contamination measured at same points. Confirmed by result analysis of samples.
 Procedures applied: System stopped.
- Analyse shows compressor oil (Breox) <u>milligram</u> (mg) traces.

CMS Cold-Box Contamination Summary of events (2/2)

Major intervention launched in agreement with CMS

- 1. Evaluate the oil removal system (one "loose" coalescer in oil-separator, replacement of several coalescers).
- 2. Dismount 80 K absorber, replace the active charcoal, clean the vessel and remount it, replace its outlet filter.

Courtesy Miguel Jimenez

Turbine 1 dismounted: oil droplets

CMS Cold-Box Contamination *Perspectives*

- 1. All checks had positive outcomes:
 - <u>AT</u> @ exchanger remains stable;
 - Negligible clogging (ΔP) of the newly installed T1 filter, Charcoal dust contamination was observed;
 - ΔP over the 80K absorber outlet filter is showing a clear tendency to saturation;
 - No leak found;
 - No gas contamination found (online chromatography).
- 2. Agreed schedule:
 - Friday 12th, proceed with cool down of thermal screen
 - Sunday 14th, warm up of the Cold-Box;
 - Monday 15th, flushing of 80 K absorber charcoal and filter exchange;
 - Wednesday 17th, resume cool down of Cold-Box;
 - Thursday 18th, Cold-Box ready to be connected to CMS Magnet.
- 3. CMS planning:
 - Friday 19th June, Cold-Box fully released for operation.
 - Sunday 21st June, Start cool down of CMS magnet: 5 days needed.
 - Friday 26th June, CMS ready for powering of the magnet.
 - Sunday 28th June, CMS Fully operational (magnet powered)

LHC from 1st beam to Physics

LHCf PHYSICS

- 8 weeks beam commissioning
- Pilot physics up to ~40 bunches per beam
- 5 days special physics at beta* = 19 m LHCf, (VdM, TOTEM & ALFA postponed)
- Start technical stop 15th June

Request: 10 nb⁻¹

3850

3851

3855

2h49m

11h13m

14h15m

1.95

6.81

6.49

39 nominal

39 nominal

39 nominal

CERN Status Report on the start-up activities COUNCII Frédérick Bordry 18th June 2015

33

Last Weekend: start of intensity ramp-up 50 bunches

14-Jun-2015 16:38:08	Fill #: 3858	Energy: 6500 GeV	I(B1): 4.12e+12	I(B2): 5.23e+12
Experiment Status	ATLAS PHYSICS			LHCb PHYSICS
Instantaneous Lumi [(ub.s)^-	1] 91.910	0.094	91.882	5.697
BRAN Luminosity [(ub.s)^–1	.] 364.2	0.0	140.0	13.6
Fill Luminosity (nb)^-1	3227.569	2.906	3073.492	169.969
BKGD 1	0.300	0.036	0.024	0.188
BKGD 2	126.011	1.521	0.061	23.826
BKGD 3	0.530	0.041	3.171	0.097
LHCb VELO Position 🛛 🛛 G	ap: -0.0 mm	STABLE BEAMS	ТОТЕМ	PHYSICS
5E12- 4E12- 3E12- 2E12- 1E12- 1E12-				
17:00 20:00 	23:00 02:0	0 05:00 04	8:00 11:00	14:00
Background 1 100 10 10 10 10 10 10 10 10	Upda	ted: 16:38:08 Background 2		Updated: 16:38:0

Number of bunches	50
Number of colliding bunches (ATLAS/CMS)	38
Peak luminosity	1.45 x 10 ³² cm ⁻² s ⁻¹
Integrated luminosity	3.8 + 3.5 pb ⁻¹
Peak <events>/BX</events>	~27

LHC 2015 – Q3/Q4

	Oct Nov Dec					ct Nov							
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	28	5	12	2 19	26	2	9	16	23	30	7	V 14	21
Tu			- <u>1</u>					lons				al	
We			sic n				TS3	setup				Technical stop	
Th			physic							IONS		Tecl st	
Fr			Special			MD 3							Xmas
Sa			ъ В										
Su													

LHC schedule 2015: latest schedule

Phase	Days
Initial Commissioning	57
Scrubbing	23
Special physics run 1 (LHCf/VdM)	5
Proton physics 50 ns	9 + 21
Proton physics 25 ns	70
Special physics run 2 (TOTEM/VdM)	7
Machine development (MD)	15
Technical stops	15
Technical stop recovery	3
Ion setup/Ion run	4 + 24
Total	253 (36 weeks)
Four weeks delay from: - Powering tests/quench training overru - Earth fault resolution (sector 3-4)	un

LHC 2015: projection

Including intensity ramp-ups and steadily increasing physics efficiency

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Courtesy Mike Lamont

Conclusion (March 2015)

KEEP CAIT'S ALMOST HERE

Safety First, Quality Second, Schedule Third.

Conclusion (June 2015)

KEEP CALM BECAUSE WE DIDIT

Safety First, Quality Second, Schedule Third.

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

14-Jun-2015 16:38:08 F	ill #: 3858	Energy: 6500 GeV	I(B1): 4.12e+12	l(B2): 5.23e+12	
Experiment Status	ATLAS PHYSICS	ALICE PHYSICS	CMS PHYSICS	LHCb PHYSICS	
Instantaneous Lumi [(ub.s)^–1]	91.910	0.094	91.882	5.697	
BRAN Luminosity [(ub.s)^-1]	364.2	0.0	140.0	13.6	
Fill Luminosity (nb)^–1	3227.569	2.906	3073.492	169.969	
BKGD 1	0.300	0.036	0.024	0.188	
BKGD 2	126.011	1.521	0.061	23.826	
BKGD 3	0.530	0.041	3.171	0.097	
LHCb VELO Position N Gap:	-0.0 mm	STABLE BEAMS	TOTE	M: PHYSICS	
erformance over the last 24 Hrs				Updated: 16:38:0 7000 5000 3000 3000 2000 1000 0	
17:00 20:00 2 - I(B1) - I(B2) - Energy	13:00 02:00) 05:00 0	8:00 11:00	14:00	
ackground 1	Updat	ed: 16:38:08 Background 2		Updated: 16:38:0	

39

16:35

www.cern.ch

2015: ATLAS and CMS performance

- Beta* = 80 cm, possible reduction later in year (count 4 days plus fast intensity ramp up)
- Nominal bunch population for 50 and 25 ns
- Reasonable emittance into collisions
- Assume slightly worse machine availability than in 2012
- TDI limit:144 bunches/injection colliding bunches for 25 ns down to 2376
- If things go well... (recall 2012 1 fb⁻¹/week with ~7e33 cm⁻²s⁻¹)

	Nc	β*	ppb	EmitN	Lumi [cm ⁻² s ⁻¹]	Days (approx)	Int lumi	Pileup
50 ns						21		
2015.1	2376	80	1.2e11	3.1	7.0e33	35	~5 fb⁻¹	21
2015.2	2376	40	1.2e11	3.1	1.2e34	30	~4 fb⁻¹	35

GPD Integrated luminosity target for the year was 10 fb⁻¹ (after Chamonix workshop Oct. 2014) Now on the challenging side – 5 to 10 fb⁻¹

Status Report on the start-up activities Council Frédérick Bordry 18th June 2015

Courtesy Mike Lamont