Status Report on the start-up activities

 (injectors and LHC) and outlook CouncilFrédérick Bordry
$18^{\text {h }}$ June 2015

PS Booster: Fixed-Target Beams June 2015

good progress made in pushing ISOLDE intensity

HIE-ISOLDE cryo-module status

PS Booster: LHC-type and Scrubbing Beams - June 2015

LHC type beams	status
LHC 25ns DB	OK in specs
LHC 50ns DB	OK in specs
BCMS 25ns DB	OK in specs
LHCPROBE	OK in specs
LHCINDIV	OK in specs
LHCF_INDIV	OK in specs
scrubbing beams	status
high-intensity 25 ns	OK in specs
high-intensity BCMS	OK in specs
high-intensity doublet	being checked

scrubbing beams successfully delivered to SPS

$(\text { CRN }$	Status Report on the start-up activities Council Frédérick Bordry $18^{\text {th }}$ June 2015	Courtesy Klaus Hanke	4

PS Machine: Beam Availability

- Very good beam availability out of the PS
Beam to:

SPS for Fixed Target	93%
nTOF	89%
East Area	95%
SPS for LHC	91%

Since start Proton run April 2015

- The 2014 run allowed to fully recover following all modifications made during LS1
- PS is in a good shape to deliver the LHC beams, but also the fixed target beams

Good progress for the nTOF beam (09-06-2015)

Planned Integrated Intensity for the $\mathbf{2 0 1 5}$ nTOF Run
(1.7×10 ${ }^{19}$ P.O.T. planned, based on 2015 injector schedule ver. 1.5)

- Planned integrated proton intensity on target: 4.15×10^{18}.
- Achieved integrated proton intensity on target: 4.06×10^{18}.
- This is 98% w.r.t. scheduled and 24% of the total forecasted for 2015

PS : Intense Machine Development Program

- LHC Injector Upgrade Studies
- Space charge studies
- LHC beam performance studies
- Preparation scrubbing runs in SPS and LHC
- Special doublet beam developed
- Commissioning Multi-turn Extraction (MTE) for SPS fixed target beam
- Optimises the PS machine performance also for operational beams
- Reduces PS radiation levels

SPS: Fixed-Target Beams

- Fixed target

- Stable running with 210^{13} p/cycle, 85% availability
- New spill control gives better stability for TT20 steering.
- NA62 will start on June $22^{\text {nd }}$.

SPS-PAGE1
SC 1 (30BP, 36.0s)

Current user: MD2

Status Report on the start-up activities
Frédérick Bordry

SPS: LHC-type and Scrubbing Beams

- LHC

- Pilot, Indiv, and 50nsec (6 bunches of 1.210^{11} protons, $1.6 \mu \mathrm{~m}$ emittance) injected in LHC.
- Nominal 25 nsec 1.210^{11}, $3 \mu \mathrm{~m}$ emittance is ready and was used by HiRadMat.
- Doublet beam : Train of 12 bunches extracted to first TED.

Profile of beam prepared for Vandermeer scan

Doublet beam on screen infront of TEDin TT60

The LHC powering tests overview

Since September 15 ${ }^{\text {th }} 2014$:
1566 superconducting circuits commissioned through execution and analysis of more than 10.000 test steps (~ 13.800 test steps including re-execution)

Status Report on the start-up activities Council
Frédérick Bordry
18 ${ }^{\text {th }}$ June 2015

Powering tests were completed at 8 am on Friday $3^{\text {rd }}$ April 2015

9000
$\begin{array}{lllll}10 & 20 & 30 & 40 & 50\end{array}$ Highcharts.com

Circuit	Status								
RB.A12	11080 A reached	50	95	9	2	1	4	7	7
RB.A23	11080 A reached	56	58	40	0	2	15	17	17
RB.A34	11080 A reached	44	81	29	1	7	8	16	16
RB.A45	11080 A reached	48	44	62	-	3	48	51	49
RB.A56	11080 A reached	28	42	84	0	0	18	18	17
RB.A67	11080 A reached	57	36	61	0	1	21	22	21
RB.A78	11080 A reached	53	40	61	2	10	7	19	19
RB. 481	11080 A reached	64	24	66	0	3	26	29	26

Dipole Training Campaign

> Each Sector Trained to 6.55TeV (11080A) (100 A above the operational field)

Sector	\# Training quench	Flattop quenches
S12	7	0
S23	17	0
S34	15	1
S45	51	0
S56	18	3
S67	22	1
S78	19	3
S81	29	0
Total	171	8

Large variation in number of training quenches per sector

Detailed Analysis in Progress!

Not everything is plain sailing! One example... sector 3-4

Unfortunately can not see the debris in the affected magnet

Metal chips and pieces found in the past

Top of the half moon

Three options were evaluated

One week of intense preparation

Status Report on the start-up activities

Discharge Set-Up

How it worked?

and 11 ms instead of 2 month
(10 days of thinking and preparation)

Discharge time:
Discharge voltage:
Dissipated energy:
Balancing resistors:
Short resistance:
$\sim 11.5 \mathrm{~ms}$
906 V to 578 V
$\sim 1.5 \mathrm{~kJ}$
$2 \times 10 \mathrm{hm}$
~1 Ohm
~500J

Status Report on the start-up activities
Frédérick Bordry

Beam dump system: Dry Runs

Final Preparations: Cold Checkout

First Cycle of the Complete Machine

Beam Interlock Loop Closed

... all ready on Saturday $4^{\text {th }}$ April

Status Report on the start-up activities

First circulating beams in LHC on Easter Sunday $5^{\text {th }}$ April 2015

Status Report on the start-up activities
Council
Frédérick Bordry

First beams at 6.5 TeV ! (12 ${ }^{\text {th }}$ April)

Beam Commissioning

Beam Commissioning Roadmap

Injection - probe

- System commissioning with beam

Collimation
Ramp - probe

- Beam dump
- Feedbacks
- Beam instrumentation
- Machine protection
- RF
- Transverse damper
- Injection
- Machine characterization
- Optics measurement and correction
- Magnetic machine
- Operations
- High intensity injection
- Ramp to 6.5 TeV
- First squeeze tests
- Debugging
- Squeeze
- Collision

Squeeze - nominal
Flat-top - probe
Squeeze - probe

Injection - nominal

Ramp - nominal

Flat-top - nominal

Collide \& validation

First stable beams in LHC: 3rd June 2015

Status Report on the start-up activities
Council
Frédérick Bordry
$18^{\text {th }}$ June 2015

LHC experiments are back in business at a new record energy 13 TeV 3rd June 2015

Beam commissioning in two months (-)

- A lot of lessons learnt and experience from Run 1
- Excellent and improved system performance (LS1)
- Beam Instrumentation
- Transverse feedback
- RF
- Collimation
- Injection and beam dump systems
- Vacuum
- Machine protection
- Improved software \& analysis tools (LS1)
- Magnetically reproducibility
- Optically good, corrected to excellent
- Behaving well at 6.5 TeV
- One additional training quench so far
- Operationally well under control
- Injection, ramp, squeeze, de-squeeze

One cloud in the sky: Aperture in 15R8 : MUFO => ULO
Aperture restriction:
\diamond Measured at injection and 6.5 TeV
\diamond UFO stopped after $2^{\text {nd }}$ beam screen warm-up
\star Reference orbit is bumped by +1 mm in V and -3 mm in H at 15R8.
\checkmark Probably not a limiting aperture for operation
\diamond But stability of the object remains a concern
...to come
\diamond How does it behave with higher intensities? bunch trains? ...

Still have to face the intensity ramp-up

- UFOs, e-cloud, beam induced heating, instabilities,... especially 25 ns
- ULO (Unidentified Laying Objects)

CMS Cold-Box Contamination Summary of events (1/2)

- CMS refrigerator has been re-started in November 2014 after the LS1 maintenance;
- Mid March first sign of contamination, at that moment blamed on air / water-pollution.
Procedures applied: sub-system regenerated.
- Beginning of May contamination identified at three different points. Procedures applied: System stopped, samples taken and complete regeneration.
- After re-start of system almost immediate contamination measured at same points. Confirmed by result analysis of samples. Procedures applied: System stopped.
- Analyse shows compressor oil (Breox) milligram (mg) traces.

CMS Cold-Box Contamination
 Summary of events (2/2)

Major intervention launched in agreement with CMS

1. Evaluate the oil removal system (one "loose" coalescer in oil-separator, replacement of several coalescers).
2. Dismount 80 K absorber, replace the active charcoal, clean the vessel and remount it, replace its outlet filter.

Turbine 1 dismounted: oil droplets

Status Report on the start-up activities
Council
Frédérick Bordry

CMS Cold-Box Contamination
 Perspectives

1. All checks had positive outcomes:

- ΔT @ exchanger remains stable;
- Negligible clogging ($\Delta \mathrm{P}$) of the newly installed T1 filter, Charcoal dust contamination was observed;
- $\quad \Delta \mathrm{P}$ over the 80 K absorber outlet filter is showing a clear tendency to saturation;
- No leak found;

- No gas contamination found (online chromatography).

2. Agreed schedule:

- Friday $12^{\text {th }}$, proceed with cool down of thermal screen
- Sunday $14^{\text {th }}$, warm up of the Cold-Box;
- Monday $15^{\text {th }}$, flushing of 80 K absorber charcoal and filter exchange;

- Wednesday $17^{\text {th }}$, resume cool down of Cold-Box;
- Thursday $18^{\text {th }}$, Cold-Box ready to be connected to CMS Magnet.

3. CMS planning:

- Friday 19th June, Cold-Box fully released for operation.
- Sunday 21st June, Start cool down of CMS magnet: 5 days needed.
- Friday 26th June, CMS ready for powering of the magnet.
- Sunday 28th June, CMS Fully operational (magnet powered)

LHC from $1^{\text {st }}$ beam to Physics

LHCf

PHYSICS

- 8 weeks beam commissioning
- Pilot physics - up to ~ 40 bunches per beam
- 5 days special physics at beta* $=19 \mathrm{~m}$ LHCf, (VdM, TOTEM \& ALFA - postponed)
- Start technical stop $-15^{\text {th }}$ June

Request: 10 nb-1

$\Sigma>16 \mathrm{nb}^{-1}$	fill	Stable beams	nb^{-1}	bunches
	3846	1h55m	0.1	39 pilots
	3847	2h16m	0.28	39 pilots
	3848	2h42m	0.91	12 nominal
	3850	2h49m	1.95	39 nominal
Staus Report on the star-up activities	3851	11h13m	6.81	39 nominal
Frédérick Bordry $18^{\text {th }}$ June 2015	3855	14h15m	6.49	39 nominal

Last Weekend: start of intensity ramp-up 50 bunches

Number of bunches	50
Number of colliding bunches (ATLAS/CMS)	38
Peak luminosity	$1.45 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Integrated luminosity	$3.8+3.5 \mathrm{pb}^{-1}$
Peak <Events>/BX	~ 27

Status Report on the start-up activities
Frédérick Bordry

LHC 2015 - Q3/Q4

Status Report on the start-up activities

LHC schedule 2015: latest schedule

Phase	Days
Initial Commissioning	57
Scrubbing	23
Special physics run 1 (LHCf/VdM)	5
Proton physics 50 ns	$9+21$
Proton physics 25 ns	70
Special physics run 2 (TOTEM/VdM)	7
Machine development (MD)	15
Technical stops	15
Technical stop recovery	3
lon setup/Ion run	$4+24$
Total	253 (36 weeks)
Four weeks delay from: - Powering tests/quench training overrun - Earth fault resolution (sector 3-4)	

LHC 2015: projection

Including intensity ramp-ups and steadily increasing physics efficiency

Conclusion (March 2015)

KEEP CALM IT'S ALMOST HERE

Safety First, Quality Second, Schedule Third.

Conclusion (June 2015)

KEEP CALM BECAUSE WE DID IT

Safety First, Quality Second, Schedule Third.

2015: ATLAS and CMS performance

- Beta* $=80 \mathrm{~cm}$, possible reduction later in year (count 4 days plus fast intensity ramp up)
- Nominal bunch population for 50 and 25 ns
- Reasonable emittance into collisions
- Assume slightly worse machine availability than in 2012
- TDI limit:144 bunches/injection - colliding bunches for 25 ns down to 2376
- If things go well... (recall $2012-1 \mathrm{fb}^{-1 /}$ week with $\sim 7 \mathrm{e} 33 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

	Nc	β^{*}	ppb	EmitN	Lumi $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	Days (approx)	Int lumi	Pileup
50 ns	1300	80	1.2 e 11	2.5	4.8 e 33	21	$<1 \mathrm{fb}^{-1}$	25
2015.1	2376	80	1.2 e 11	3.1	7.0 e 33	35	$\sim 5 \mathrm{fb}^{-1}$	21
2015.2	2376	40	1.2 e 11	3.1	1.2 e 34	30	$\sim 4 \mathrm{fb}^{-1}$	35

GPD Integrated luminosity target for the year was $10 \mathrm{fb}^{-1}$ (after Chamonix workshop Oct. 2014)
Now on the challenging side - 5 to $10 \mathrm{fb}^{-1}$

