
Offline Analysis Framework

OAF

Main Objective

• By Automatic Reports [AR] we mean here
documents automatically generated on a
regular basis from data stored in the
Logging/Measurement DB.

• The basic principle would be daily Cron tasks,
gathering, analysing and synthetizing Beam
Instruments records in DB stored during the
last 24h, and sending the corresponding
summary reports automatically by mail to the
corresponding experts or responsible.

Main Objective

At the current initial stage, our target is to cover as much as possible all
the possible common features in a single process simply based on
data set configuration files (as described later).

To do so we are today concentrating on ‘basics’, i.e. Instrument Status
Assessments:

These reports will be targeted to present the ‘current’ status of an instrument family (ie each
device of a given family). They should also identify and state clearly any status requiring
immediate action and send an alarm (mail) when something looks wrong.

Further step looks possible. We hope to be able to cover properly and
commonly instrument aging and calibration. Some examples will also be
covered in here.

For the last step, i.e. instrument performance assessment, things become
immediately too complicated and specific to justify standardisation
effort. We will let this stage to the instrument team by providing them
with a way to plug in their code in the framework, already relying on our
data extraction, reporting and emailing code. (this door is not yet
operational)

Disclaimer

• This tool will only look at what happened…

• It can only help us to:

– Be aware that something went wrong in our
instrument:

● No usage

● Bad usage

● Over usage

● Breakage…

– Be aware that something is aging:
● Calibration evolution

● Status evolution…

• It will still be up to us to be proactive with
this.

Anaconda & JPyPy:

● 125+ of the most popular Python packages for science, math, engineering,
data analysis (NumPy, SciPy, Pandas, IPython, Matplotlib, Numba, Blaze,
Bokeh..)

● Completely free - including for commercial use

● Cross platform on Linux, Windows, Mac

● Installs into a single directory and doesn't affect other Python installations on
your system. Doesn't require root or local administrator privileges

● Spyder, Ipython

● We use Jpypy for java – python integration

● Installed on bdidev2

Panda & Spyder

Main Framework Sequence

1. extract_data() # Get the snapshot data from DB

2. compute_extra_data() # Compute extra data if any as conf.

3. make_front_figure() # Make report first common pages

4. analyse_alarms() # Analyse alarms as conf. (even on extra)

5. display_alarms() # makes alarm report pages

6. make_dft_plots() # makes default plot for all variables (opt)

7. make_ext_plots() # makes extra plots if any as conf.

8. make_histo() # makes ‘history’ files if any as conf.

9. run_exp_code() # run expert dedicated code (under disc.)

10. close_report() # close and save the report file

11. inform() # send info mail to client as conf.

12. show_plots() # shows the plot windows (opt)

13. clean_all() # clean all before to exit.

• Green: Based on config file <inst>_<dataset>
• Orange: Under internal discussion. Not operational yet

Timber-Snapshots

Main Tools: Cron Tasks

• The tasks configured in cron task file will be executed sequentially.

• We have now cron task sequence executed every morning at 8:00.
These are based on dynamic snapshot of DB data covering the full
previous day

• We could have in addition cron task sequence executed every week
or hours if useful…

Main Tools:
Report Repository

• Mail sent will contain in addition to a summary of the
alarm report:

– A link towards the new report

– A link towards the repository where all reports are stored
(http://bewww/~bdisoft/bi_report/)

– A link towards the repository where most recent reports are
referred (http://bewww/~bdisoft/bi_report/RECENT/)

– A link towards the repository where most recent reports with
alarms are referred (http://bewww/~bdisoft/bi_report/RECENT_WITH_ALM/)

– A link towards the repository where most recent reports without
alarms are referred (http://bewww/~bdisoft/bi_report/RECENT_WITHOUT_ALM/)

http://bewww/~bdisoft/bi_report/
http://bewww/~bdisoft/bi_report/RECENT/
http://bewww/~bdisoft/bi_report/RECENT_WITH_ALM/
http://bewww/~bdisoft/bi_report/RECENT_WITHOUT_ALM/

Main Tools:
Report Repository

Main Tools: emailing

• Once report is done, informative email will be sent to configured
recipient with link towards report and summary of alarms

It's working

Coming Next

• New stuff, so expect bugs, missing features… but let give it a try and chance as is to cover
correctly its first purpose (status and aging) before seeking for more (absolute perf
assessment). JJ is available to discuss and implement your wishes for status/aging reports
for this first stage. Probably a lot of useful things can already be done there.

• Possible complains from CO/DM due to our new activity on their DB.

– We spoke to them. They are aware on our development and methods and will tell us
first if they see issues coming on their side. They already also showed that they can
help us when we share some interest on the request.

• Data extraction prevented by data size

– CO/DM recognize a problem on their side preventing extraction when it should be
possible. They are working on it. Some progress done already…

– We should understand on our side that having a lot of details in the DB will slow down
or even prevent useful automatic reporting. We should have a good understanding of
all the DB configuration features and go for the good compromises.

The Next Steps

• Missing and foreseen features:

– History features for easy long term monitoring on
NUMERICS and VECTORNUMERICS

– Handling of images (especially with dynamic
dimensions)

– Low resolution reports.

– When aging/status reports will be properly covered by
a stabilized framework, open the door (via a
maintainable/efficient solution) to the configurable
introduction of dedicated code by <instr/dataset>
developed by expert…

Potential Extra Usage

• We could try also to use this tool ‘ONLINE’ during
MD

– We could define a short time (ie 15 mn) dynamic DB
snapshot to look at the last 15 mn DB recording to
check that things are going well

– We could define before the MD a DB snapshot covering
the entire MD time frame and play this snapshot during
the MD to already see in realtime the data analysis we
prepared before.

Reports..

ANNEXES

Main Framework Sequence:
make_front_figure

Purpose:

Makes the report front pages with title, description of
dataset, list of variables extracted…

Main Tools:
Naming Conventions

• In order to make things possible and a little
organised, we used (and impose to work with OAF)
the following naming conventions.

• Each set of data (not when, only what) will be
identified by an <instrument ID> and a <data set
ID>

• <dataSet ID> must not contain the ‘_’ or ‘ ‘
caracters

• <instrument ID. Must belong to a predefined list
that the OAF team is maintaining

• The corresponding Timber ‘snapshot’ (see later)
must be ‘Public’ and called: BI_<instr ID>_<dataSet

Main Tools:
Naming Conventions

• In order to make things possible and a little
organised, we used (and impose to work with OAF)
the following naming conventions.

• Each set of data (not when, only what) will be
identified by an <instrument ID> and a <data set
ID>

• <dataSet ID> must not contain the ‘_’ or ‘ ‘
caracters

• <instrument ID. Must belong to a predefined list
that the OAF team is maintaining

• The corresponding Timber ‘snapshot’ (see later)
must be ‘Public’ and called: BI_<instr ID>_<dataSet

Anaconda packages …

Anaconda packages …

