Limited acceptance and baryon number conservation vs. cumulants of net proton/baryon distribution

Adam Bzdak

AGH University of Science and Technology, Krakow

Based on:
AB, V. Koch, V. Skokov, PRC 87 (2013) 014901
AB, V. Koch, PRC 86 (2012) 044904
AB, V. Koch, PRC 91 (2015) 027901

Outline

- Baryon number conservation
- calculation
- new observable
- Limited acceptance
- required vs. actual acceptance
- results, problems
- Local efficiency corrections
- Conclusions

Backup

To make a long story short we hope to see a nontrivial dependence of net baryon/proton or charge cumulant ratios as a function of energy

$$
\begin{array}{ll}
c_{1}=\left\langle N_{B}-N_{\bar{B}}\right\rangle & \\
c_{2}=\left\langle\left(N_{B}-N_{\bar{B}}\right)^{2}\right\rangle-\left\langle N_{B}-N_{\bar{B}}\right\rangle^{2} & \\
c_{3}, c_{4}, c_{5}, c_{6}, \ldots & \text { or } B \rightarrow Q
\end{array}
$$

electric charge

Obvious problem:
what is the optimal phase-space region to make measurement
p_{t} - trans. mom.

y - (pseudo)rapidity

if we measure all baryons there are no fluctuations of $N_{B}-N_{\bar{B}}$ and $c_{2}=0$ etc.

if we take very narrow bin to suppress baryon conservation we lose interesting physics

See, e.g., c_{4} / c_{2} as a function of rapidity cut

It looks like the baryon number conservation

Baryon number conservation

Skellam

$$
\begin{gathered}
P\left(n_{B}, n_{\bar{B}}\right)=P\left(n_{B}\right) P\left(n_{\bar{B}}\right) \\
\downarrow \\
P_{\Delta}\left(n_{B}-n_{\bar{B}}\right)
\end{gathered}
$$

$P(x)$ - Poisson dist.,
n_{B} - measured \# of baryons
$P_{\Delta}\left(n_{B}-n_{\bar{B}}\right)$ - Skellam distribution

Baryon conservation

$$
\begin{aligned}
P_{B}\left(n_{B}, n_{\bar{B}}\right) \sim & \sum P\left(N_{B}\right) P\left(N_{\bar{B}}\right) \delta_{N_{B}-N_{\bar{B}}-B} \times \\
& \times B\left(N_{B}, n_{B} ; p_{B}\right) B\left(N_{\bar{B}}, n_{\bar{B}}, p_{\bar{B}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B\left(N_{B}, n_{B} ; p_{B}\right)=\frac{N_{B}!}{n_{B}!\left(N_{B}-n_{B}\right)!}\left(p_{B}\right)^{n_{B}}\left(1-p_{B}\right)^{N_{B}-n_{B}} \\
& P_{B}\left(n_{B}, n_{\bar{B}}\right) \rightarrow P_{\Delta, B}\left(n_{B}-n_{\bar{B}}\right)
\end{aligned}
$$

$B(\ldots)$ - binomial dist.
N_{B} - total \# of baryons,

We assume that $P\left(N_{B}\right)$ is give by Poisson. We start with a system without any correlations whatsoever and enforce global baryon conservation.

All calculation can be done analytically

$$
\begin{aligned}
P_{B}(n)= & \left(\frac{p_{B}}{p_{\bar{B}}}\right)^{n / 2}\left(\frac{1-p_{B}}{1-p_{\bar{B}}}\right)^{(B-n) / 2} \\
& \times \frac{I_{n}\left(2 z \sqrt{p_{B} p_{\bar{B}}}\right) I_{B-n}\left(2 z \sqrt{\left(1-p_{B}\right)\left(1-p_{\bar{B}}\right)}\right)}{I_{B}(2 z)}
\end{aligned}
$$

n - net baryon $\quad z=\sqrt{\left\langle N_{B}\right\rangle\left\langle N_{\bar{B}}\right\rangle} \quad B=\left\langle N_{B}\right\rangle-\left\langle N_{\bar{B}}\right\rangle$

binomial parameter

$$
p=\frac{\# \text { of measured protons/baryons }}{\text { total \# of baryons }}
$$

$p_{\text {max }} \approx \frac{1}{2}$ if only protons are measured
$p_{\max }=1$ if baryons are measured

Results for $\left\langle N_{B}\right\rangle=400,\left\langle N_{\bar{B}}\right\rangle=100 \rightarrow B=300$

$R_{n, m}=\frac{c_{n}}{c_{m}}$
$p=\frac{\# \text { of measured protons/baryons }}{\text { total } \# \text { of baryons }}$

Results for $\left\langle N_{B}\right\rangle=400,\left\langle N_{\bar{B}}\right\rangle=100 \rightarrow B=300$

$R_{n, m}=\frac{c_{n}}{c_{m}}$
$p=\frac{\# \text { of measured protons/baryons }}{\text { total \# of baryons }}$
small p
STAR 200 GeV , $p \approx 0.013$

We obtain ($B=350$):
$200 \mathrm{GeV}: R_{4,2} \approx 0.95, R_{6,2} \approx 0.77$
$5 \mathrm{GeV}: R_{4,2} \approx 0.85, R_{6,2} \approx 0.32$

STAR data

Baryon conservation is there and should be considered carefully

Perhaps what we see in UrQMD is just baryon conservation

PRL 112 (2014) 032302

$$
c_{1}=p B
$$

New observable

$$
c_{3}=c_{1}(1-p)(1-2 p)
$$

$$
D=R_{5,1}-R_{3,1}\left[1-\frac{3}{4}(1+\gamma)(3-\gamma)\right]
$$

$$
\gamma=\sqrt{1+8 R_{3,1}}
$$

$D=0$ for a system with only baryon conservation

PQM calculation
$\mu_{B} / T=0.5$

$T_{p c}$ - crossover temperature

Limited acceptance

Definitions

K_{n} - cumulants in the required acceptance
c_{n} - cumulants in the actual acceptance

Calculation

$$
\begin{array}{cc}
p\left(n_{1}, n_{2}\right)=\sum P\left(N_{1}, N_{2}\right) B\left(N_{1}, n_{1} ; p_{1}\right) B\left(N_{2}, n_{2} ; p_{2}\right) \\
\downarrow & \downarrow \\
c_{n} & K_{n}, F_{i, k}
\end{array}
$$

what we measure
what we would like to measure

$$
p_{1}=p_{2}=1: c_{n}=K_{n}
$$

factorial moments $F_{i, k}=\left\langle\frac{N_{1}!N_{2}!}{\left(N_{1}-i\right)!\left(N_{2}-k\right)!}\right\rangle$
$B(\ldots)$ - binomial dist.

It turns out one cannot relate cumulants K_{n} solely through cumulants c_{m}

This can be done for factorial moments

$$
\begin{aligned}
\left\langle\frac{N_{1}!N_{2}!}{\left(N_{1}-i\right)!\left(N_{2}-k\right)!}\right\rangle & =\frac{1}{p_{1}^{i} p_{2}^{k}}\left\langle\frac{n_{1}!n_{2}!}{\left(n_{1}-i\right)!\left(n_{2}-k\right)!}\right\rangle \\
F_{i, k} & =\frac{1}{p_{1}^{i} p_{2}^{k}} f_{i, k}
\end{aligned}
$$

So we express required cumulants through factorial moments $F_{i, k}$, which are know from the above equality ($f_{i, k}$ is measured).

Binomial parameter

$$
p=\frac{\# \text { of measured particles }}{\text { total } \# \text { of particles that should be measured }}
$$

this p is different than p in baryon conservation

If we want to study net-baryon cumulants but we measure net-proton cumulants then $p_{\max } \approx 1 / 2$.
Detector efficiency, cuts in rapidity or transverse momentum lead to $p<1 / 2$.

STAR: $p<1 / 2$ and probably $p \approx 1 / 5$ (nobody really knows)

Relations between K_{n} and c_{n} (required vs. actual acceptance). Here $p_{1}=p_{2}=p$.

$$
\begin{aligned}
p K_{1}= & c_{1} \\
p^{2} K_{2}= & c_{2}-n(1-p), \\
p^{3} K_{3}= & c_{3}-c_{1}\left(1-p^{2}\right)-3(1-p)\left(f_{20}-f_{02}-n c_{1}\right) \\
p^{4} K_{4}= & c_{4}-n p^{2}(1-p)-3 n^{2}(1-p)^{2}-6 p(1-p) \\
& \times\left(f_{20}+f_{02}\right)+12 c_{1}(1-p)\left(f_{20}-f_{02}\right)-\left(1-p^{2}\right) \\
& \times\left(c_{2}-3 c_{1}^{2}\right)-6 n(1-p)\left(c_{1}^{2}-c_{2}\right)-6(1-p) \\
& \times\left(f_{03}-f_{12}+f_{02}+f_{20}-f_{21}+f_{30}\right) .
\end{aligned}
$$

$f_{i, k}$ - measured factorial moments $\quad n \equiv\left\langle n_{1}\right\rangle+\left\langle n_{2}\right\rangle$
General case $p_{1} \neq p_{2}$, see PRC 86 (2012) 044904

Illustration

Local efficiency corrections

Suppose our machine detects particles with probabilities that depend on p_{t} (in general $\left.p_{t}, y, \phi\right)$.

$\epsilon(\bar{\epsilon})$-- probabilities to detect baryons (antibaryons) or positive (negative) charges

We measure $f_{i, k}$ and c_{n} but we want to know true $F_{i, k}$ and K_{n}

produced

Calculation

$$
\begin{gathered}
\langle N\rangle=\sum_{x=1,2,3}\langle N(x)\rangle \quad\langle N(x)\rangle=\frac{1}{\epsilon(x)}\langle n(x)\rangle \\
F_{1,1}=\langle N \bar{N}\rangle=\sum_{x=1,2,3} \sum_{\bar{x}=1,2,3}\langle N(x) \bar{N}(\bar{x})\rangle \\
\langle N(x) \bar{N}(\bar{x})\rangle=\frac{1}{\epsilon(x) \bar{\epsilon}(\bar{x})}\langle n(x) \bar{n}(\bar{x})\rangle
\end{gathered}
$$

Once we know $F_{i, k}$ we can construct cumulnats K_{n}
and

$$
\begin{aligned}
& F_{2,0}=\langle N(N-1)\rangle=\sum_{x_{1}=1,2,3} \sum_{x_{2}=1,2,3}\left\langle N\left(x_{1}\right)\left[N\left(x_{2}\right)-\delta_{x_{1}, x_{2}}\right]\right\rangle \\
& \left\langle N\left(x_{1}\right)\left[N\left(x_{2}\right)-\delta_{x_{1}, x_{2}}\right]\right\rangle=\frac{1}{\epsilon\left(x_{1}\right) \epsilon\left(x_{2}\right)}\left\langle n\left(x_{1}\right)\left[n\left(x_{2}\right)-\delta_{x_{1}, x_{2}}\right]\right\rangle \\
& \delta_{x_{1}, x_{2}}=1 \text { if } x_{1}=x_{2} \text { and zero otherwise }
\end{aligned}
$$

See backup or PRC 91 (2015) 027901 for general equations

Conclusions

- Baryon number conservation results in a comparable signal as the experimental data for net proton cumulants
- Limited acceptance/efficiency is the most serious problem that makes any interpretation of net proton cumulants challenging
- Data should be corrected (at least checked) for local efficiency

Backup

Cumulants

$$
\begin{aligned}
& g(t)=\ln \left(\sum_{n} P_{B}(n) e^{n t}\right) \quad \text { cumulant generating function } \\
& g(t)=\sum_{k=1}^{\infty} c_{k} \frac{t^{k}}{k!} \quad \begin{array}{l}
\text { n-th derivative with respect to } t \text { (at } t=0 \text {) } \\
\text { gives } c_{n}
\end{array}
\end{aligned}
$$

$P_{B}(n)$ - net baryon/proton/charge distribution

Cumulants vs. factorial moments

$$
\begin{aligned}
K_{1}= & \left\langle N_{1}\right\rangle-\left\langle N_{2}\right\rangle, \\
K_{2}= & N-K_{1}^{2}+F_{02}-2 F_{11}+F_{20}, \\
K_{3}= & K_{1}+2 K_{1}^{3}-F_{03}-3 F_{02}+3 F_{12}+3 F_{20}-3 F_{21}+F_{30}-3 K_{1}\left(N+F_{02}-2 F_{11}+F_{20}\right), \\
K_{4}= & N-6 K_{1}^{4}+F_{04}+6 F_{03}+7 F_{02}-2 F_{11}-6 F_{12}-4 F_{13}+7 F_{20}-6 F_{21}+6 F_{22}+6 F_{30}-4 F_{31}+F_{40} \\
& +12 K_{1}^{2}\left(N+F_{02}-2 F_{11}+F_{20}\right)-3\left(N+F_{02}-2 F_{11}+F_{20}\right)^{2}-4 K_{1}\left(K_{1}-F_{03}-3 F_{02}+3 F_{12}+3 F_{20}-3 F_{21}+F_{30}\right) \\
K_{5}= & K_{1}+24 K_{1}^{5}-F_{05}-10 F_{04}-25 F_{03}-15 F_{02}+15 F_{12}+20 F_{13}+5 F_{14}+15 F_{20}-15 F_{21}-10 F_{23}+25 F_{30} \\
& -20 F_{31}+10 F_{32}+10 F_{40}-5 F_{41}+F_{50}-60 K_{1}^{3}\left(N+F_{02}-2 F_{11}+F_{20}\right)+30 K_{1}\left(N+F_{02}-2 F_{11}+F_{20}\right)^{2} \\
& +20 K_{1}^{2}\left(K_{1}-F_{03}-3 F_{02}+3 F_{12}+3 F_{20}-3 F_{21}+F_{30}\right)-10\left(N+F_{02}-2 F_{11}+F_{20}\right)\left(K_{1}-F_{03}\right. \\
& \left.-3 F_{02}+3 F_{12}+3 F_{20}-3 F_{21}+F_{30}\right)-5 K_{1}\left(N+F_{04}+6 F_{03}+7 F_{02}-2 F_{11}-6 F_{12}-4 F_{13}+7 F_{20}-6 F_{21}\right. \\
& \left.+6 F_{22}+6 F_{30}-4 F_{31}+F_{40}\right) \\
& N-120 K_{1}^{6}+F_{06}+15 F_{05}+65 F_{04}+90 F_{03}+31 F_{02}-2 F_{11}-30 F_{12}-80 F_{13}-45 F_{14}-6 F_{15}+31 F_{20}-30 F_{21} \\
K_{6}= & N-30 F_{22}+30 F_{23}+15 F_{24}+90 F_{30}-80 F_{31}+30 F_{32}-20 F_{33}+65 F_{40}-45 F_{41}+15 F_{42}+15 F_{50}-6 F_{51}+F_{60} \\
& +360 K_{1}^{4}\left(N+F_{02}-2 F_{11}+F_{20}\right)-270 K_{1}^{2}\left(N+F_{02}-2 F_{11}+F_{20}\right)^{2}+30\left(N+F_{02}-2 F_{11}+F_{20}\right)^{3}-120 K_{1}^{3}\left(K_{1}\right. \\
& \left.-F_{03}-3 F_{02}+3 F_{12}+3 F_{20}-3 F_{21}+F_{30}\right)+120 K_{1}\left(N+F_{02}-2 F_{11}+F_{20}\right)\left(K_{1}-F_{03}-3 F_{02}+3 F_{12}\right. \\
& \left.+3 F_{20}-3 F_{21}+F_{30}\right)-10\left(K_{1}-F_{03}-3 F_{02}+3 F_{12}+3 F_{20}-3 F_{21}+F_{30}\right)^{2}+30 K_{1}^{2}\left(N+F_{04}+6 F_{03}+7 F_{02}-2 F_{11}\right. \\
& \left.-6 F_{12}-4 F_{13}+7 F_{20}-6 F_{21}+6 F_{22}+6 F_{30}-4 F_{31}+F_{40}\right)-15\left(N+F_{02}-2 F_{11}+F_{20}\right)\left(N+F_{04}+6 F_{03}\right. \\
& \left.+7 F_{02}-2 F_{11}-6 F_{12}-4 F_{13}+7 F_{20}-6 F_{21}+6 F_{22}+6 F_{30}-4 F_{31}+F_{40}\right)-6 K_{1}\left(K_{1}-F_{05}-10 F_{04}-25 F_{03}-15 F_{02}\right. \\
& \left.+15 F_{12}+20 F_{13}+5 F_{14}+15 F_{20}-15 F_{21}-10 F_{23}+25 F_{30}-20 F_{31}+10 F_{32}+10 F_{40}-5 F_{41}+F_{50}\right) .
\end{aligned}
$$

$$
N=\left\langle N_{1}\right\rangle+\left\langle N_{2}\right\rangle \quad K_{1}=\left\langle N_{1}\right\rangle-\left\langle N_{2}\right\rangle \quad F_{i k}=\frac{1}{p_{1}^{i} p_{2}^{k}} f_{i k}
$$

c_{3} / c_{1} as a function of binomial parameter p

multiplicity distr. narrower

multiplicity distr. broader than Poisson

K_{4} / K_{2}
K_{4} / K_{2}
$\frac{K_{4}}{K_{2}}=-1,0,1 / 2,1$

Local efficiency - general expressions

$$
\begin{aligned}
& A_{i, k}\left(x_{1}, \ldots, x_{i} ; \bar{x}_{1}, \ldots, \bar{x}_{k}\right)=\left\langle N\left(x_{1}\right)\left[N\left(x_{2}\right)-\delta_{x_{1}, x_{2}}\right] \cdots\left[N\left(x_{i}\right)-\delta_{x_{1}, x_{i}}-\cdots-\delta_{x_{i-1}, x_{i}}\right]\right. \\
& \left.\bar{N}\left(\bar{x}_{1}\right)\left[\bar{N}\left(\bar{x}_{2}\right)-\delta_{\bar{x}_{1}, \bar{x}_{2}}\right] \cdots\left[\bar{N}\left(\bar{x}_{k}\right)-\delta_{\bar{x}_{1}, \bar{x}_{k}}-\cdots-\delta_{\bar{x}_{k-1}, \bar{x}_{k}}\right]\right\rangle \\
& \begin{aligned}
a_{i, k}\left(x_{1}, \ldots, x_{i} ; \bar{x}_{1}, \ldots, \bar{x}_{k}\right)= & \left\langle n\left(x_{1}\right)\left[n\left(x_{2}\right)-\delta_{x_{1}, x_{2}}\right] \cdots\left[n\left(x_{i}\right)-\delta_{x_{1}, x_{i}}-\cdots-\delta_{x_{i-1}, x_{i}}\right]\right. \\
& \left.\bar{n}\left(\bar{x}_{1}\right)\left[\bar{n}\left(\bar{x}_{2}\right)-\delta_{\bar{x}_{1}, \bar{x}_{2}}\right] \cdots\left[\bar{n}\left(\bar{x}_{k}\right)-\delta_{\bar{x}_{1}, \bar{x}_{k}} \cdots-\delta_{\bar{x}_{k-1}, \bar{x}_{k}}\right]\right\rangle
\end{aligned} \\
& a_{i, k}=\epsilon\left(x_{1}\right) \cdots \epsilon\left(x_{i}\right) \bar{\epsilon}\left(\bar{x}_{1}\right) \cdots \bar{\epsilon}\left(\bar{x}_{k}\right) A_{i, k} \\
& F_{i, k}=\sum_{x_{1}, \ldots, x_{i}} \sum_{\bar{x}_{1}, \ldots, \bar{x}_{k}} \frac{a_{i, k}\left(x_{1}, \ldots, x_{i} ; \bar{x}_{1}, \ldots, \bar{x}_{k}\right)}{\epsilon\left(x_{1}\right) \ldots \epsilon\left(x_{i}\right) \bar{\epsilon}\left(\bar{x}_{1}\right) \ldots \bar{\epsilon}\left(\bar{x}_{k}\right)}
\end{aligned}
$$

STAR results for c_{4} / c_{2}. The minimum is present only in the most central collisions.

Peculiar centrality dependence only for 19.6 and 27 GeV

