Higher moments of particle distributions in infinite hadronic matter

Dmytro Oliinychenko

Frankfurt Institute of Advanced Studies oliiny@fias.uni-frankfurt.de in collaboration with Hannah Petersen, Jan Steinheimer and Marcus Bleicher

July 31, 2015

<ロト <四ト <注入 <注下 <注下 <

Fluctuations and phase transitions

- In physical chemistry
- Nuclear liquid-gas transition
 - $\gamma_2 = \frac{m_2 m_0}{m_1^2}$ m_i - *i*-th moment of charge multiplicity, not including largest fragment

•
$$NVE = \frac{\sigma_{E_{kin}/A}^2}{\langle E_{kin}/A \rangle}$$

Ma et al., Phys.Rev. C69 (2004) 031604

Heavy ion collisions

 γ_2 of the QP system formed in Ar+Ni as a function of excitation energy. From TAMU data.

 $N\!V\!E$ of the QP system formed in Ar+Ni as a function of excitation energy in our TAMU data.

イロト イポト イヨト イヨト

Fluctuations in heavy ion collisions

- What fluctuates?
 - Multiplicities
 - Energy
 - Conserved charges
- Challenges
 - Volume fluctuations
 - Conservation laws effects
 - Kinematic cuts
 - Detector efficiencies
 - Finite statistics
 - "Stopping fluctuations"

Role of dynamical simulations in fluctuations studies

- Transport models provide means to get handle on:
 - Charge diffusion
 - Effects of resonances
 - Kinematic cuts
 - Conservation laws effect
- With transport models one can test new correction methods
- Transport models are already used for these purposes

What biases can be brought be the transport model itself?

D. Oliinychenko (FIAS)

SMASH transport code

- Non-equilibrium relativistic hadron transport
- Resonances up to 2 GeV
- Geometrical collision criterion $d_{ij} \leq (\sigma_{ij}/\pi)^{1/2}$
- Parametrized resonance cross-sections, mass-dependent width
- In this presentation a simple setup is used:
 - Stable particles of one sort
 - Only elastic collisions
 - Infinite matter calculation box with periodic boundaries

 $\sigma_{el}=$ 30 mb, V=(10 fm $)^3$, $T=0.2~{
m GeV}$

• Example:

Analytical expectation for the moments of a gas in a box

- Rectangular box, volume V, M uniformly distributed particles
- Probability to find *n* particles in a subvolume v ($p \equiv v/V$, $q \equiv 1-p$)

$$w(n) = C_M^n p^n q^{M-n}$$

• Central moments of binomial distribution $\mu_r \equiv \langle (n - \langle n \rangle)^r \rangle$

$$\mu_2 = Mpq$$

$$\mu_3 = Mpq(1 - 2p)$$

$$\mu_4 = 3M^2p^2q^2$$

• Variance, skewness, kurtosis

$$\sigma^2/M \equiv \mu_2/M = q$$

 $S\sigma \equiv \mu_3/\sigma^2 = 1 - 2p$
 $\kappa\sigma^2 \equiv (\mu_4/\mu_2^2 - 3)\mu_2 = 1 - 6pc$

Moments of gas in the box: statistical effects

Initialize box with uniformly distributed 200 protons, $N_{event} = 5 \cdot 10^6$

- Why does one need so much statistics?
- Is code result consistent with expectation? Error bars needed.
 - Simulate N_{event} events N times, compute variance of σ , S, κ ?
 - What do we do for μ_1 ? Variance $\mu_2(\mu_1) = \mu_2$.
 - ▶ In a similar way $\mu_2(\mu_{2,3,4})$ can be expressed for an arbitrary distribution P. R. Rider, *Moments of moments*, Proc N.A.S., Vol. 15, 1929

< ロト < 同ト < ヨト < ヨト

On relative statistical errors of mean, σ^2 , S, κ

Assume $N \equiv N_{events} \gg 1$, expressions simplify considerably.

$$\begin{array}{c|ccc} i & \sqrt{\mu_2(\mu_i)}/\mu_i & \sqrt{\mu_2(\mu_i)}/\mu_i \text{ for binomial} \\ \hline 1 & \sqrt{\mu_2}/\mu_1 & N^{-1/2}\sqrt{(1-p)/p} \\ 2 & N^{-1/2}\frac{\sqrt{\mu_4-\mu_2^2}}{\mu_2} & \sqrt{2}N^{-1/2} \\ 3 & N^{-1/2}\frac{\sqrt{A}}{\mu_3} & \sqrt{6p(1-p)}/(1-2p) \\ 4 & N^{-1}\frac{\sqrt{B}}{\mu_4} & 4\sqrt{2/3}N^{-1/2} \end{array}$$

 $\begin{aligned} A &= \mu_6 - 6\mu_4\mu_2 - \mu_3^2 + 9\mu_2^3 \\ B &= N\mu_8 + 40\mu_2\mu_6 - 8N\mu_5\mu_3 - N\mu_4^2 - 120\mu_4\mu_2^2 + 16N\mu_3^2\mu_2 + 72\mu_2^4 \end{aligned}$

Why does skewness still converge in the simulation? Why do we need so much statistics for kurtosis?

Moments of gas in the box: systematic effects

Procedure:

- Initialize box with pions
 - uniform in space
 - thermal momentum distribution
 - ▶ 5 · 10⁶ events
 - can only interact elastically with cross-section σ
 - periodic boundaries, interaction through periodic boundaries included
- Run until momentum distribution stabilizes 10 fm/c is enough
- Look at higher moments

How do moments change with

- cross-section σ
- density
- mean free path

Effect of the cross-section

 $\sigma = 10 mb$

 $\sigma = 30 mb$: systematic deviations

D. Oliinychenko (FIAS)

July 2015 9

Effect of density

Are these effects physical/numerical/statistical? Compare to free streaming, $\sigma=$ 0.

D. Oliinychenko (FIAS)

Moments in the box

Summary

- Box with elastically interacting particles was simulated with transport code
 - Higher moments extremely sensitive to statistics
 - Systematical effects of interactions on variance and skewness are seen, increasing with σ and particle density
- Work on errors of higher moments in progress
- Future plans
 - Systematic study of mean free path effect
 - Isospin diffusion in a box with protons, neutrons and resonances
 - π - ρ system with charge conservation
 - Effects of kinematic cuts

Backup: SMASH box

Scattering through boundaries implemented:

With scattering through periodic boundaries

No scattering through periodic boundaries