Higher moments of particle distributions in infinite hadronic matter

Dmytro Oliinychenko

Frankfurt Institute of Advanced Studies
oliiny@fias.uni-frankfurt.de
in collaboration with Hannah Petersen, Jan Steinheimer and Marcus Bleicher

```
Deutsche

July 31, 2015

\section*{Fluctuations and phase transitions}
- In physical chemistry
- Nuclear liquid-gas transition
- \(\gamma_{2}=\frac{m_{2} m_{0}}{m_{1}^{2}}\)
\(m_{i}\) - \(i\)-th moment of charge multiplicity, not including largest fragment
- \(N V E=\frac{\sigma_{E_{k i n}}^{2} / A}{\left\langle E_{k i n} / A\right\rangle}\)

Ma et al., Phys.Rev. C69 (2004) 031604
- Heavy ion collisions



\(\gamma_{2}\) of the QP system formed in \(\mathrm{Ar}+\mathrm{Ni}\) as a function of excitation energy. From TAMU data.

\(N V E\) of the QP system formed in \(\mathrm{Ar}+\mathrm{Ni}\) as a function of excitation energy in our TAMU data.

\section*{Fluctuations in heavy ion collisions}
- What fluctuates?
- Multiplicities
- Energy
- Conserved charges
- Challenges
- Volume fluctuations
- Conservation laws effects
- Kinematic cuts
- Detector efficiencies
- Finite statistics
- "Stopping fluctuations"

\section*{Role of dynamical simulations in fluctuations studies}
- Transport models provide means to get handle on:
- Charge diffusion
- Effects of resonances
- Kinematic cuts
- Conservation laws effect
- With transport models one can test new correction methods
- Transport models are already used for these purposes


What biases can be brought be the transport model itself?

\section*{SMASH transport code}
- Non-equilibrium relativistic
hadron transport
- Resonances up to 2 GeV
- Geometrical collision criterion \(d_{i j} \leq\left(\sigma_{i j} / \pi\right)^{1 / 2}\)
- Parametrized resonance cross-sections, mass-dependent width
- In this presentation a simple setup is used:
- Stable particles of one sort
- Only elastic collisions
- Infinite matter calculation box with periodic boundaries \(\quad \sigma_{e l}=30 \mathrm{mb}, V=(10 \mathrm{fm})^{3}\), \(T=0.2 \mathrm{GeV}\)

\section*{Analytical expectation for the moments of a gas in a box}
- Rectangular box, volume \(V, M\) uniformly distributed particles
- Probability to find \(n\) particles in a subvolume \(v(p \equiv v / V, q \equiv 1-p)\)
\[
w(n)=C_{M}^{n} p^{n} q^{M-n}
\]
- Central moments of binomial distribution \(\mu_{r} \equiv\left\langle(n-\langle n\rangle)^{r}\right\rangle\)
\[
\begin{aligned}
& \mu_{2}=M p q \\
& \mu_{3}=M p q(1-2 p) \\
& \mu_{4}=3 M^{2} p^{2} q^{2}
\end{aligned}
\]
- Variance, skewness, kurtosis
\[
\begin{aligned}
& \sigma^{2} / M \equiv \mu_{2} / M=q \\
& S \sigma \equiv \mu_{3} / \sigma^{2}=1-2 p \\
& \kappa \sigma^{2} \equiv\left(\mu_{4} / \mu_{2}^{2}-3\right) \mu_{2}=1-6 p q
\end{aligned}
\]

\section*{Moments of gas in the box: statistical effects}

Initialize box with uniformly distributed 200 protons, \(N_{\text {event }}=5 \cdot 10^{6}\)



- Why does one need so much statistics?
- Is code result consistent with expectation? Error bars needed.
- Simulate \(N_{\text {event }}\) events \(N\) times, compute variance of \(\sigma, S, \kappa\) ?
- What do we do for \(\mu_{1}\) ? Variance \(\mu_{2}\left(\mu_{1}\right)=\mu_{2}\).
- In a similar way \(\mu_{2}\left(\mu_{2,3,4}\right)\) can be expressed for an arbitrary distribution
P. R. Rider, Moments of moments, Proc N.A.S., Vol. 15, 1929

\section*{On relative statistical errors of mean, \(\sigma^{2}, S, \kappa\)}

Assume \(N \equiv N_{\text {events }} \gg 1\), expressions simplify considerably.
\[
\begin{array}{ccc}
i & \sqrt{\mu_{2}\left(\mu_{i}\right)} / \mu_{i} & \sqrt{\mu_{2}\left(\mu_{i}\right)} / \mu_{i} \text { for binomial } \\
\hline 1 & \sqrt{\mu_{2}} / \mu_{1} & N^{-1 / 2} \sqrt{(1-p) / p} \\
2 & N^{-1 / 2} \frac{\sqrt{\mu_{4}-\mu_{2}^{2}}}{\mu_{2}} & \sqrt{2} N^{-1 / 2} \\
3 & N^{-1 / 2} \frac{\sqrt{A}}{\mu_{3}} & \sqrt{6 p(1-p)} /(1-2 p) \\
4 & N^{-1} \frac{\sqrt{B}}{\mu_{4}} & 4 \sqrt{2 / 3} N^{-1 / 2}
\end{array}
\]
\[
\begin{aligned}
& A=\mu_{6}-6 \mu_{4} \mu_{2}-\mu_{3}^{2}+9 \mu_{2}^{3} \\
& B=N \mu_{8}+40 \mu_{2} \mu_{6}-8 N \mu_{5} \mu_{3}-N \mu_{4}^{2}-120 \mu_{4} \mu_{2}^{2}+16 N \mu_{3}^{2} \mu_{2}+72 \mu_{2}^{4}
\end{aligned}
\]

Why does skewness still converge in the simulation? Why do we need so much statistics for kurtosis?

\section*{Moments of gas in the box: systematic effects}

Procedure:
- Initialize box with pions
- uniform in space
- thermal momentum distribution
- \(5 \cdot 10^{6}\) events
- can only interact elastically with cross-section \(\sigma\)
- periodic boundaries, interaction through periodic boundaries included
- Run until momentum distribution stabilizes - \(10 \mathrm{fm} / \mathrm{c}\) is enough
- Look at higher moments

How do moments change with
- cross-section \(\sigma\)
- density
- mean free path

\section*{Effect of the cross-section}

\section*{\(\sigma=10 m b\)}




\section*{\(\sigma=30 \mathrm{mb}\) : systematic deviations}




\section*{Effect of density}




Are these effects physical/numerical/statistical? Compare to free streaming, \(\sigma=0\).




\section*{Summary}
- Box with elastically interacting particles was simulated with transport code
- Higher moments extremely sensitive to statistics
- Systematical effects of interactions on variance and skewness are seen, increasing with \(\sigma\) and particle density
- Work on errors of higher moments in progress
- Future plans
- Systematic study of mean free path effect
- Isospin diffusion in a box with protons, neutrons and resonances
- \(\pi-\rho\) system with charge conservation
- Effects of kinematic cuts

\section*{Backup: SMASH box}

Scattering through boundaries implemented:


With scattering through periodic boundaries

Uniformity versus x


No scattering through periodic boundaries```

