





# Fluctuations and correlations in dynamical models

Elena Bratkovskaya in collaboration with M. Gorenstein, W. Cassing, M. Hauer, V. Konchakovski, V. Ozvenchuk, V.D. Toneev and V. Voronyuk

Institut für Theoretische Physik & FIAS, Uni. Frankfurt



HIC for FAIR Workshop on Fluctuation and Correlation Measures in Nuclear Collisions 2015

# The holy grail of HIC



Study of the partonic medium beyond the phase boundary

# **Lattice QCD: Critical Point**

Fluctuations of the quark number density (susceptibility) at  $\mu_q > 0$ 

$$\frac{\chi_q}{T^2} = \left[\frac{\partial^2}{\partial (\mu_q / T)^2} \frac{P}{T^4}\right]_{T_{fixed}}$$

Lattice QCD predictions: χ<sub>q</sub> (quark number density fluctuations) will diverge at the critical chiral point =>

**Experimental observation** – look for **non-monotonic behavior** of the observables near the critical point :

- baryon number fluctuations
- charge number fluctuations
- multiplicity fluctuations
- **a** particle ratio fluctuations (K/ $\pi$ , K/p, ...)
- mean p<sub>T</sub> fluctuations
- 2 particle correlations





# **"Background"** Fluctuations

Many factors lead to **"background" fluctuations** that can mask the signal of the critical point and therefore have to be carefully studied and accounted for:

- limited size of the colliding system
- fluctuations of initial conditions in heavy-ion collisions
- event-by-event fluctuations of the collision geometry
- experimental acceptance
- statistical fluctuations



• ...

In order to understand the "background" fluctuations we apply models, where no phase transition is implemented :

- wounded nucleon model
- statistical model of hadron-resonance gas
- transport models HSD and UrQMD
- • •

cf. review: Konchakovski et al., J. Phys. G37 (2010) 073101

## Study of fluctuations within transport models

HSD – Hadron-String-Dynamics transport approach UrQMD – Ultra-relativistic-Quantum-Molecular-Dynamics

**Transport models allow to study:** 

 statistical and dynamical fluctuations
 event-by-event analysis - similar to the experiment
 the centrality dependence
 the energy dependence of fluctuations
 the influence of the experimental acceptance on the final results on fluctuations





## **Multiplicity fluctuations in p+p**

Scaled variance - multiplicity fluctuations in some acceptance (charge, strangeness, etc.):





# Fluctuations in the number of participants

#### **Fixed-target experiment:**



Even for a fixed number of projectile participants  $N_p^{proj}$  the full number of participants  $N_p$  can fluctuate due to participant fluctuations in the target  $N_p^{targ}$  Participant number fluctuations are reflected in the observable fluctuations (e. g. multiplicity fluctuations)



To get rid of the fluctuations in the participant number one needs to consider only the most central collisions!

Konchakovski et al., Phys. Rev. C73 (2006) 034902; C78 (2008) 024906

## **Multiplicity fluctuations in N+N and central A+A**

Konchakovski, Gorenstein, Bratkovskaya, Phys. Lett. B 651, 114 (2007)

□ Fluctuations in p+p and central A+A are very close within HSD due to the small participant number fluctuation in central A+A

**Statistical model** shows very small and energy independent fluctuations and **contradicts to** the **transport** calculations where **ω** reaches significant values for large energies



 $\Box$  NA49  $\Rightarrow$  one cannot clearly distinguish between statistical and transport models because of small acceptance and small differences between the model predictions in this range of energy

# **Fluctuation program of NA61/SHINE Collaboration**

NA61/SHINE Collaborationprovides a comprehensiveenergy and system size scanof the phase diagram at theCERN SPS





The critical point should lead to an increase of multiplicity fluctuations in the two dimensional plane:
 (E, A) energy - system size or equivalently

(**T**,µ<sub>B</sub>) temperature - baryon-chemical potential

Gazdzicki, PoS CPOD2006:016

Fluctuations and CP: Stephanov, Rajagopal, Shuryak, Phys. Rev. D 60, 114028 Freeze-out points: Becattini et al., Phys. Rev. C 73, 044905

# **Multiplicity fluctuations for 1%MC**

Konchakovski, Lungwitz, Gorenstein, Bratkovskaya, Phys. Rev. C78 (2008) 024906



Multiplicity fluctuations for 1%MC practically do not depend on atomic mass for y>0 and only slightly grow with increasing collision energy.



**HSD and UrQMD show a plateau** on top of which the SHINE Collaboration expects to find increasing multiplicity fluctuations as a "signal" for the critical point !

# **Multiplicity fluctuations for 1%MC**

Konchakovski, Lungwitz, Gorenstein, Bratkovskaya, Phys. Rev. C78 (2008) 024906



□ Multiplicity fluctuations for 1%MC practically do not depend on atomic mass for y>0 and only slightly grow with increasing collision energy.



**HSD and UrQMD show a plateau** on top of which the SHINE Collaboration expects to find increasing multiplicity fluctuations as a "signal" for the critical point !

# **Charge fluctuations**

□ sensitive to the EoS at the early stage of the collision and to its changes in the deconfinement phase transition region



**The decay of resonances strongly modifies the initial QGP fluctuations!** 

## **Event-by-event particle ratio fluctuations**

**Ratio fluctuations:** 
$$\sigma^2 \equiv \frac{\langle \Delta (N_A/N_B)^2 \rangle}{\langle N_A/N_B \rangle^2}$$

**In assumption**  $|\Delta N_A| \ll \langle N_A \rangle$ ,  $|\Delta N_B| \ll \langle N_B \rangle$ 

it can be rewritten as:  $\sigma^2 \cong \frac{\omega_A}{\langle N_A \rangle} + \frac{\omega_B}{\langle N_B \rangle} - 2\rho_{AB} \left[ \frac{\omega_A \omega_B}{\langle N_A \rangle \langle N_B \rangle} \right]^{1/2}$ 

with correlation parameter  $\rho_{AB}$ 

$$g \equiv \frac{\left\langle \Delta N_A \Delta N_B \right\rangle}{\left[ \left\langle (\Delta N_A)^2 \right\rangle \left\langle (\Delta N_B)^2 \right\rangle \right]^{1/2}}$$

In GCE for ideal Boltzman gas:

$$\omega_A = \omega_B = 1 \text{ and } \rho_{AB} = 0 \implies \sigma^2 = \frac{1}{\langle N_A \rangle} + \frac{1}{\langle N_B \rangle}$$

#### **Dynamical fluctuations:**

after subtraction of  $\sigma$  for mixed events one gets:

$$\sigma_{dyn} \equiv \operatorname{sign}\left(\sigma^{2} - \sigma_{mix}^{2}\right) \left|\sigma^{2} - \sigma_{mix}^{2}\right|^{1/2}$$

#### $\Box$ $v_{dyn}$ fluctuations:

independent of fluctuations of the number of participants

$$v_{\rm dyn,K\pi} = \frac{\left\langle N_{\rm K} \left( N_{\rm K} - 1 \right) \right\rangle}{\left\langle N_{\rm K} \right\rangle^2} + \frac{\left\langle N_{\pi} \left( N_{\pi} - 1 \right) \right\rangle}{\left\langle N_{\pi} \right\rangle^2} - 2 \frac{\left\langle N_{\rm K} N_{\pi} \right\rangle}{\left\langle N_{\rm K} \right\rangle \left\langle N_{\pi} \right\rangle}$$

## **Statistical and HSD Model Results for Ratio Fluctuations**



**\Box** Large difference in SM and the transport model predictions for  $\omega_{\pi}$  with increasing energy!

**\Box** For  $\sigma_{dyn}$  SM and HSD differ at low energies in contrast to  $\omega$ !

Gorenstein, Hauer, Konchakovski, Bratkovskaya, Phys. Rev. C 79(2009) 024907

# K/π-ratio fluctuations: Transport models vs Data



HSD: Phys. Rev. C 79 (2009) 024907 UrQMD: J. Phys. G 30 (2004) S1381, PoS CFRNC2006,017 NA49: 0808.1237 STAR: 0901.1795  Exp. data show a plateau from top SPS up to RHIC energies and an increase towards lower SPS energies
 evidence for a critical point at low SPS energies ?

 but the HSD (without QGP!) results shows the same behavior →
 K/p-ratio fluctuation is driven by hadronic sources

! K/p ratio fluctuation is sensitive to the acceptance!



#### Forward-Backward Correlations in Nucleus-Nucleus Collisions: Baseline Contributions from Geometrical Fluctuations?





#### **STAR:**

More central collision -> higher correlations

#### **Interpretation:**

- Dual Partonic Model?
- CGC?
- Geometrical fluctuations?

## Forward-Backward Correlations: Au+Au 200 GeV



• Different centrality definitions lead to different event samples in the same centrality class. This is crucial for small centrality bins!

Konchakovski, Hauer, Torrieri, Gorenstein, Bratkovskaya, PRC79, 034910 (2009)



# **Summary I**

- The fluctuations in the number of target participants for fixed projectile participants - strongly influence all observable fluctuations
- Transport models show a smooth energy and atomic number dependence for the multiplicity fluctuations. Thus, the hadron-string models (without explicit phase transition!) demonstrate that the expected enhanced fluctuations - attributed to the critical point and phase transition - may be observed experimentally on top of a monotonic and smooth 'background'
- HSD results for the K/π ratio fluctuations show that it grows at low SPS energies similar to the NA49 data; strong sensitivity to exp.acceptance!
- Forward-backward correlations show a large sensitivity on the initial collisional geometry and centrality bin definition!

# Fluctuations in-equilibrium QGP using PHSD





#### PHSD is a non-equilibrium transport model with

- explicit phase transition from hadronic to partonic degrees of freedom
- IQCD EoS for the partonic phase (,crossover' at μq=0)
- explicit parton-parton interactions between quarks and gluons
- dynamical hadronization

QGP phase is described by the Dynamical QuasiParticle Model (DQPM)
 matched to reproduce lattice QCD
 A. Peshier, W. Cassing, PRL 94 (2005) 172301;
 W. Cassing, NPA 791 (2007) 365: NPA 793 (2007)

strongly interacting quasi-particles: massive quarks and gluons (g,q,q<sub>bar</sub>) with sizeable collisional widths in self-generated mean-field potential

Spectral functions:

 $\rho_i(\omega,T) = \frac{4\omega\Gamma_i(T)}{\left(i=q,\bar{q},g\right)} \left(\omega^2 - \bar{p}^2 - M_i^2(T)\right)^2 + 4\omega^2\Gamma_i^2(T)$ 



T/T

□ Transport theory: generalized off-shell transport equations based on the 1st order gradient expansion of Kadanoff-Baym equations (applicable for strongly interacting system!)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3



Important: to be conclusive on charm observables, the light quark dynamics must be well under control!



Cf. talk by Pierre Moreau, Tu, 16:20; Alessia Palmese, Fr, 16:00

**PHSD** provides a **good description of ,bulk' observables** (y-, p<sub>T</sub>-distributions, flow coeficients  $v_n, ...$ ) from SPS to LHC

# **Properties of parton-hadron matter in-equilibrium**

V. Ozvenchuk et al., PRC 87 (2013) 024901, arXiv:1203.4734 V. Ozvenchuk et al., PRC 87 (2013) 064903, arXiv:1212.5393

#### The goal:

PHS

**study of the dynamical equilibration** of QGP within the non-equilibrium off-shell PHSD transport approach

**transport coefficients (shear and bulk viscosities) of strongly interacting** partonic matter

**particle number fluctuations (scaled variance, skewness, kurtosis)** 

#### **Realization:**

**D** Initialize the system in a finite box with periodic boundary conditions with some energy density  $\varepsilon$  and chemical potential  $\mu_q$ 

**C** Evolve the system in time until equilibrium is achieved



**Properties of parton-hadron matter – shear viscosity** 

 $\eta$ /s using Kubo formalism and the relaxation time approximation (,kinetic theory')

**T**=T<sub>C</sub>:  $\eta$ /s shows a minimum (~0.1) close to the critical temperature

**T>T<sub>C</sub> : QGP - pQCD limit** at higher temperatures

**TTTC**: fast increase of the ratio  $\eta$ /s for hadronic matter

lower interaction rate of hadronic system

 smaller number of degrees of freedom (or entropy density) for hadronic matter compared to the QGP



Virial expansion: S. Mattiello, W. Cassing, Eur. Phys. J. C 70, 243 (2010).

**QGP** in **PHSD** = strongly-interacting liquid

**Properties of parton-hadron matter – electric conductivity** 

•The response of the strongly-interacting system in equilibrium to an external electric field  $eE_z$  defines the electric conductivity  $\sigma_0$ :

PHS

$$\frac{\sigma_0}{T} = \frac{j_{eq}}{E_z T}, \quad j_z(t) = \frac{1}{V} \sum_j eq_j \frac{p_z^j(t)}{M_j(t)},$$



the QCD matter even at T~ T<sub>c</sub> is a much better electric conductor than Cu or Ag (at room temperature) by a factor of 500 !





## **Scaled variance**



→ scaled variances reach a plateau in time for all observables
 → equilibrium values are less than 1 (as in GCE) for all ω → MCE
 → particle number fluctuations are flavor blind

V. Ozvenchuk et al., PRC 87 (2013) 024901, arXiv:1203.4734



## **Skewness**

**Skewness** 
$$g_1 = \frac{m_3}{m_2^{3/2}} = \frac{m_3}{\sigma^3}$$
,  $m_3 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^3$ 

**skewness** characterizes the **asymmetry** of the distribution function with respect to its **average value** 



#### V. Ozvenchuk et al., PRC 87 (2013) 024901, arXiv:1203.4734



## **Kurtosis**



#### **η/s → QGP in PHSD behaves as a strongly-interacting liquid**

**\Box** significant rise of the bulk viscosity to entropy density ratio  $\zeta$ /s in the vicinity of the critical temperature when including the scalar mean-field from PHSD

**scaled variances** ω for the different particle number fluctuations in the box reach equilibrium values in time and behave as in a micro-canonical ensemble

**skewness** for all observables are compatible with zero

**excess kurtosis** is compatible with IQCD results for gluons and charged particles

Chiral magnetic effect and evolution of the electromagnetic field in relativistic heavy-ion collisions



# **Charge separation in HIC: CP violation signal**

**Magnetic field** through the **axial anomaly** induces a parallel electric field which will separate different charges



Non-zero angular momentum (or equivalently strong magnetic field) in heavy-ion collisions make it possible for P- and CP-odd domains to induce charge separation → ,chiral magnetic effect' (CME) D.Kharzeev, PLB 633 (2006) 260

**Electric dipole moment of QCD matter !** 

Measuring the charge separation with respect to the reaction plane - S.Voloshin, PRC 70 (2004) 057901

#### $\langle \cos(\psi_{\alpha} + \psi_{\beta} - 2\Psi_{RP}) \rangle =$ $= \langle \cos(\psi_{\alpha} + \psi_{\beta} - 2\psi_{c}) \rangle / v_{2,c} = v_{1,\alpha}v_{1,\beta} - a_{\alpha}a_{\beta}$

Combination of intense B-field and deconfinement is needed for a spontanuous parity violation signal !

# **Charge separation in RHIC experiments**

#### STAR Collaboration, PRL 103 (2009) 251601

 $<\cos(\phi_a + \phi_b - 2\psi_{RP})>$ 



Combination of intense B and deconfinement is needed for a spontaneous parity violation signal

# **PHSD with electromagnetic fields**



32

#### Generalized transport equations in the presence of electromagnetic fields\*:

$$\begin{split} \dot{\vec{r}} &\to \frac{\vec{p}}{p_0} + \vec{\nabla}_p U \ , \qquad U \sim Re(\Sigma^{ret})/2p_0 \\ \dot{\vec{p}} &\to -\vec{\nabla}_r U + e\vec{E} + e\vec{v} \times \vec{B} \end{split}$$

#### ❑ A general solution of the wave equations

➔ retarded Lienard-Wiechert electric and magnetic potentials:

$$e \mathbf{E}(\mathbf{r}, t) = \alpha \sum_{n} Z_n \frac{[\mathbf{R}_n - R_n \mathbf{v}_n]}{(R_n - \mathbf{R}_n \cdot \mathbf{v})^3} (1 - v^2), \qquad e \mathbf{B}(\mathbf{r}, t) = \alpha \sum_{n} Z_n \frac{\mathbf{v} \times \mathbf{R}_n}{(R_n - \mathbf{R}_n \cdot \mathbf{v})^3} (1 - v^2),$$
$$\mathbf{R}_n = \mathbf{r} - \mathbf{r}_n$$

\* Realized in the PHSD for hadrons and quarks

V. Voronyuk, et al., Phys.Rev. C83 (2011) 054911

# **Magnetic field evolution**



AuAu,  $\sqrt{S_{NN}} = 200 \text{ GeV}$ , b=10 fm, t=0.2 fm/c

AuAu,  $\sqrt{S_{NN}} = 200 \text{ GeV}$ , b=10 fm, t=0.5 fm/c



 $m_\pi^2 \approx 10^{18} {
m Gauss}$ 

V.Voronyuk, et al., Phys.Rev. C83 (2011) 054911

# Time dependence of eB<sub>v</sub>



 Until t~1 fm/c the induced magnetic field is defined by spectators only
 Maximal magnetic field is reached during nuclear overlapping time Δt~0.2 fm/c, then the field goes down exponentially

## **Angular correlation wrt. reaction plane**



Angular correlation is of hadronic origin up to s<sup>1/2</sup> = 11 GeV !

V. D. Toneev et al., PRC 85 (2012) 034910, PRC 86 (2012) 064907

## **Compensation of magnetic and electric forces**



Au+Au, s<sup>1/2</sup> = 11 GeV, b=10 fm

 $\dot{\vec{p}} 
ightarrow e \vec{E} + e \vec{v} imes \vec{B}$ 

Momentum increment: (for p<sub>z</sub>>0)

 $\Delta \mathbf{p}(t) = \sum_{t_i}^t \langle d\mathbf{p}(t_i) \rangle$ 

strong magnetic and electric forces compensate each other!

V. D. Toneev et al., PRC 85 (2012) 034910, PRC 86 (2012) 064907



The PHSD transport model with retarded electromagnetic fields shows :

- **Carticle Control of Strong electric and magnetic fields** at heavy-ion collisions
- □ strong magnetic and electric forces compensate each other → small effect on observables
- □ low-energy experiments within the RHIC BES program at √s<sub>NN</sub> = 7.7 and 11.5 GeV can be explained within *hadronic scenario* without reference to the spontaneous local CP violation.
- □ PHSD doesn't reproduce the exp. data on angular correlations  $<\cos(\phi_a + \phi_b 2\psi_{RP})>$  at  $\sqrt{s_{NN}}= 39 200$  GeV → indication for CME?

