Measurement of event-by-event fluctuations and chemical freeze-out conditions at LHC energies with ALICE

A. Kalweit, CERN on behalf of the ALICE collaboration

central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$

central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$

central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$

Light flavor hadrons (u,d,s valence quarks) are produced in apparent chemical ($T_{chem} \approx 156 \text{ MeV}$) and kinetic equilibrium ($T_{kin} \approx 100 \text{ MeV}$).

central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$

Light flavor hadrons (u,d,s valence quarks) are produced in apparent chemical ($T_{chem} \approx 156 \text{ MeV}$) and kinetic equilibrium ($T_{kin} \approx 100 \text{ MeV}$).

98% of all particles are produced with p_T < 2 GeV/c → thermal particle production in a non-perturbative regime => thermodynamics => LATTICE QCD calculations

- Measurement of the production *yields* of identified particles and chemical freeze-out conditions:
 - Hadron resonance gas approach in thermal-statistical *models*

- Measurement of event-by-event *fluctuations* of conserved quantities:
 - net-charge fluctuations
 - plans for future measurements
 - allows direct comparison of measurements to ab initio calculations

- Measurement of the production *yields* of identified particles and chemical freeze-out conditions:
 - Hadron resonance gas approach in thermal-statistical *models*

Well measured production of particles **integrated over many events**. Beautifully established picture from experimental and theoretical side.

- Measurement of event-by-event *fluctuations* of conserved quantities:
 - net-charge fluctuations
 - plans for future measurements
 - allows direct comparison of measurements to ab initio calculations

- Measurement of the production *yields* of identified particles and chemical freeze-out conditions:
 - Hadron resonance gas approach in thermal-statistical *models*

- Measurement of event-by-event *fluctuations* of conserved quantities:
 - net-charge fluctuations
 - plans for future measurements
 - allows direct comparison of measurements to ab initio calculations

Well measured production of particles **integrated over many events**. Beautifully established picture from experimental and theoretical side.

But no (or little) sensitivity to critical behavior...

- Measurement of the production *yields* of identified particles and chemical freeze-out conditions:
 - Hadron resonance gas approach in thermal-statistical *models*

- Measurement of event-by-event *fluctuations* of conserved quantities:
 - net-charge fluctuations
 - plans for future measurements
 - allows direct comparison of measurements to ab initio calculations

Well measured production of particles **integrated over many events**. Beautifully established picture from experimental and theoretical side.

But no (or little) sensitivity to critical behavior...

Very sensitive to critical behavior.

- Measurement of the production *yields* of identified particles and chemical freeze-out conditions:
 - Hadron resonance gas approach in thermal-statistical *models*

- Measurement of event-by-event *fluctuations* of conserved quantities:
 - net-charge fluctuations
 - plans for future measurements
 - allows direct comparison of measurements to ab initio calculations

Well measured production of particles **integrated over many events**. Beautifully established picture from experimental and theoretical side.

But no (or little) sensitivity to critical behavior...

Very sensitive to critical behavior.

Still a lot of work to do at LHC energies.. Many questions are still open.

- Fluctuations can be of **statistical** or **dynamical** origin and we must carefully distinguish them. Dynamical fluctuations arise from physical phenomena.
- Ongoing and completed fluctuation analyses in ALICE:
 - net-charge fluctuations
 - net-strangeness
 - balance functions
 - mean p_T fluctuations → see next talk by Stefan Heckel
 - multiplicity fluctuations
 - higher moments of net-charge and net-baryon fluctuations
 - temperature fluctuations

ITS+TPC+TRD: excellent track reconstruction capabilities in a high track density environment.

ITS+TPC+TRD: excellent track reconstruction capabilities in a high track density environment.

ITS: precise separation of primary particles and those from weak decays of strange particles or knock-out from material.

Drift Pixel Strip ACORDE ITS FMD EMCAL T0 & V0 V0 TRD T0 HMPID FMD TRACKING CHAMBERS PMD ZDC -116m from LP MUON FILTER V0 T0 TRIGGER TPC CHAMBERS/ ZDC -116m from I.P./ TOF DIPOLE MAGNET PHOS ABSORBER

ITS+TPC+TRD: excellent track reconstruction capabilities in a high track density environment.

ITS: precise separation of primary particles and those from weak decays of strange particles or knock-out from material.

TPC: particle identification via d*E*/d*x* (allows also separation of charges).

ITS+TPC+TRD: excellent track reconstruction capabilities in a high track density environment.

ITS: precise separation of primary particles and those from weak decays of strange particles or knock-out from material.

TPC: particle identification via d*E*/d*x* (allows also separation of charges).

TOF: particle identification via time-of-flight.

ITS+TPC+TRD: excellent track reconstruction capabilities in a high track density environment.

ITS: precise separation of primary particles and those from weak decays of strange particles or knock-out from material.

TPC: particle identification via d*E*/d*x* (allows also separation of charges).

TOF: particle identification via time-of-flight.

Excellent particle identification over a wide momentum range (≈ 0.1 GeV/c to ≈ 30 GeV/c).

ITS+TPC+TRD: excellent track reconstruction capabilities in a high track density environment.

ITS: precise separation of primary particles and those from weak decays of strange particles or knock-out from material.

TPC: particle identification via d*E*/d*x* (allows also separation of charges).

TOF: particle identification via time-of-flight.

Excellent particle identification over a wide momentum range (≈ 0.1 GeV/c to ≈ 30 GeV/c).

ALICE is ideally suited for the measurement of light flavor hadrons on an event-by-event basis.

Bulk particle production

 Investigate matter in local thermal equilibrium => Look at the hadrons made up of the most abundantly produced quarks: u,d,s.

π, K, p, Λ, Ξ, Ω, Φ, K^{*0}, d, ³He, ³_ΛH, ⁴He

 Decays of strange particles feed into the states with lower mass and need to be carefully subtracted for consistent data ↔ model comparisons:

 $\begin{array}{ll} \Lambda \rightarrow p \ \pi & (63.9 \ \%) \\ \Xi \rightarrow \Lambda \ \pi & (99.87 \ \%) \end{array}$

Bulk particle production

 Investigate matter in local thermal equilibrium => Look at the hadrons made up of the most abundantly produced quarks: u,d,s.

π, K, p, Λ, Ξ, Ω, Φ, K^{*0}, d, ³He, ³_ΛH, ⁴He

 Decays of strange particles feed into the states with lower mass and need to be carefully subtracted for consistent data ↔ model comparisons:

 $\begin{array}{ll} \Lambda \rightarrow p \ \pi & (63.9 \ \%) \\ \Xi \rightarrow \Lambda \ \pi & (99.87 \ \%) \end{array}$

(ALICE Definition) *Primary particles* are defined as prompt particles produced in the collision including all decay products, except products from weak decays of light flavor hadrons and of muons.

Detector efficiencies

Detector efficiencies

Chemical freeze-out and thermal model calculations

Particle yields of light flavor hadrons are described over 7 orders of magnitude within 20% (except K*⁰) with a common chemical freeze-out temperature of T_{ch} \approx 156 MeV (prediction from RHIC extrapolation was \approx 164 MeV).

Particle yields of light flavor hadrons are described over 7 orders of magnitude within 20% (except K^{*0}) with a common chemical freeze-out temperature of T_{ch} \approx 156 MeV (prediction from RHIC extrapolation was \approx 164 MeV).

Hadrons are produced in apparent chemical equilibrium in Pb-Pb collisions at LHC energies.

Particle yields of light flavor hadrons are described over 7 orders of magnitude within 20% (except K^{*0}) with a common chemical freeze-out temperature of T_{ch} \approx 156 MeV (prediction from RHIC extrapolation was \approx 164 MeV).

Hadrons are produced in apparent chemical equilibrium in Pb-Pb collisions at LHC energies.

Largest deviations observed for **protons** (incomplete hadron spectrum, baryon annihilation in hadronic phase,..?) and for K*⁰.

Particle yields of light flavor hadrons are described over 7 orders of magnitude within 20% (except K*⁰) with a common chemical freeze-out temperature of T_{ch} \approx 156 MeV (prediction from RHIC extrapolation was \approx 164 MeV).

Hadrons are produced in apparent chemical equilibrium in Pb-Pb collisions at LHC energies.

Largest deviations observed for **protons** (incomplete hadron spectrum, baryon annihilation in hadronic phase,..?) and for **K***⁰.

Three different versions of thermal model implementations give similar results.

Event-by-event fluctuations of conserved quantities

Thermodynamic susceptibilities

• Event-by-event fluctuations of the conserved quantities in QCD (*charge Q*, *baryon number B*, *strangeness S*) correspond to thermodynamic susceptibilities χ of the system which can be directly calculated in Lattice QCD or in the Hadron Resonance Gas (HRG) model:

$$\chi^{BSQ}_{lmn} = \frac{\partial^{l+m+n}(P/T^4)}{\partial(\mu_B/T)^l \,\partial(\mu_S/T)^m \,\partial(\mu_S/T)^n}$$

 Statistical distribution of conserved quantities are quantified by their (central) moments or cumulants.

Thermodynamic susceptibilities

• Event-by-event fluctuations of the conserved quantities in QCD (*charge Q*, *baryon number B*, *strangeness S*) correspond to thermodynamic susceptibilities χ of the system which can be directly calculated in Lattice QCD or in the Hadron Resonance Gas (HRG) model:

$$\chi^{BSQ}_{lmn} = \frac{\partial^{l+m+n}(P/T^4)}{\partial(\mu_B/T)^l \,\partial(\mu_S/T)^m \,\partial(\mu_S/T)^n}$$

 Statistical distribution of conserved quantities are quantified by their (central) moments or cumulants.

Thermodynamic susceptibilities

• Event-by-event fluctuations of the conserved quantities in QCD (*charge Q*, *baryon number B*, *strangeness S*) correspond to thermodynamic susceptibilities χ of the system which can be directly calculated in Lattice QCD or in the Hadron Resonance Gas (HRG) model:

$$\chi^{BSQ}_{lmn} = \frac{\partial^{l+m+n}(P/T^4)}{\partial(\mu_B/T)^l \,\partial(\mu_S/T)^m \,\partial(\mu_S/T)^n}$$

 Statistical distribution of conserved quantities are quantified by their (central) moments or cumulants.

Towards a measurement of net-baryon number at LHC...

- The measurement is experimentally very challenging:
 - Correction for detector efficiency (N.B.: efficiencies differ for protons and anti-protons due to absorption).
 - Auto-correlations with centrality estimator.
 -> use forward detectors to avoid them.
 - Contamination from protons from material.
 - Contamination from weak decays:
 - •Does the inclusion of them bring us closer to the total baryon number *B*?
 - •Can one separate cleanly $\chi_{\rm B}$ and $\chi_{\rm S}$?
 - Misidentified particles.
- However, we already know how to correct for these effects on average for particle spectra..

[Phys. Rev. C 88, 044910 (2013)]

Net charge fluctuations

Net charge fluctuations — introduction

- So far, only a net-charge measurement corresponding to the second order moment has been finalised at LHC energies: [Phys. Rev. Lett. 110, 152301].
- Simplified picture:

 v_{dyn} as robust variable to quantify dynamical fluctuations and to identify relevant charge carriers:

$$\boldsymbol{v}_{(+-,dyn.)} = \frac{\left\langle N_{+} \left(N_{+} - 1 \right) \right\rangle}{\left\langle N_{+} \right\rangle^{2}} + \frac{\left\langle N_{-} \left(N_{-} - 1 \right) \right\rangle}{\left\langle N_{-} \right\rangle^{2}} - 2 \frac{\left\langle N_{+} N_{-} \right\rangle}{\left\langle N_{+} \right\rangle \left\langle N_{-} \right\rangle}$$

Net charge fluctuations — introduction

- So far, only a net-charge measurement corresponding to the second order moment has been finalised at LHC energies: [Phys. Rev. Lett. 110, 152301].
- Simplified picture:

Substantially smaller value of the correlation function is expected in the QGP phase than in the hadronic phase.

Hadronic phase: $q = \pm 1$ $\Rightarrow q^2 = \pm 1$ Partonic phase: $q = \pm (2/3), \pm (1/3)$ $= > q^2 = \pm (4/9), \pm (1/9)$

 v_{dyn} as robust variable to quantify dynamical fluctuations and to identify relevant charge carriers:

$$\boldsymbol{v}_{(+-,dyn.)} = \frac{\left\langle N_{+} \left(N_{+} - 1 \right) \right\rangle}{\left\langle N_{+} \right\rangle^{2}} + \frac{\left\langle N_{-} \left(N_{-} - 1 \right) \right\rangle}{\left\langle N_{-} \right\rangle^{2}} - 2 \frac{\left\langle N_{+} N_{-} \right\rangle}{\left\langle N_{+} \right\rangle \left\langle N_{-} \right\rangle}$$

D-measure of net-charge fluctuations

• v_{dyn} can be connected to the entropy of the system via the D-measure in order to relate it to theoretical expectations (corrected for acceptance and global charge conservation):

D-measure of net-charge fluctuations

• v_{dyn} can be connected to the entropy of the system via the D-measure in order to relate it to theoretical expectations (corrected for acceptance and global charge conservation):

$$D = \langle N_{ch} \rangle \langle \delta R^2 \rangle$$
$$D \approx 4 \frac{\langle \delta Q^2 \rangle}{\langle N_{ch} \rangle} \approx \begin{cases} 3 & \text{HRG} \\ 1 - 1.5 & \text{QGF} \end{cases}$$
$$D - 4 \approx \langle N_{ch} \rangle v_{(+-,dyn)}^{corr}$$

D decreases slightly with centrality and shows values between HRG and QGP expectation.

D-measure of net-charge fluctuations

• v_{dyn} can be connected to the entropy of the system via the D-measure in order to relate it to theoretical expectations (corrected for acceptance and global charge conservation):

$$D = \langle N_{ch} \rangle \langle \delta R^2 \rangle$$
$$D \approx 4 \frac{\langle \delta Q^2 \rangle}{\langle N_{ch} \rangle} \approx \begin{cases} 3 & \text{HRG} \\ 1 - 1.5 & \text{QGR} \end{cases}$$
$$D - 4 \approx \langle N_{ch} \rangle v_{(+-,dyn)}^{corr}$$

D decreases slightly with centrality and shows values between HRG and QGP expectation.

HIJING shows no centrality dependence and larger values than the data.

Energy and rapidity window dependence

- Results are shown for 0-5% most central collisions.
- Decreasing trend with increasing center-of-mass energy is observed.
- ALICE values significantly lower than the hadron gas expectation while RHIC measurements are still compatible.
- Strong dependence on rapidity window observed which seems to saturate above Δη ≈ 2.3 assuming diffusion functions. Initial fluctuations are diluted by final state interactions and limited experimental acceptance. Extending it further in η would be nice.

Frankfurt | 2015-JUL-29 | Alexander.Philipp.Kalweit@cern.ch

16

Balance function

Balance function

• Definition:

$$B(\Delta \eta, \Delta \varphi) = \frac{S(\Delta \eta, \Delta \varphi)_{US}}{B(\Delta \eta, \Delta \varphi)_{US}} - \frac{S(\Delta \eta, \Delta \varphi)_{LS}}{B(\Delta \eta, \Delta \varphi)_{LS}}$$
$$US = + -/- + LS = + +/- -$$

- Motivation:
 - Creation of balancing charges in rapidly expanding medium
 - What is the time ordering of the collision?
 - Can we detect different stages where charges are created?
- Early stage creation: large final separation, wider balance function
- Late stage creation: pairs more correlated, narrower balance functions
- **BUT:** stronger flow can also lead to a stronger correlation of pairs and a narrow balance function.

[PLB, 723 (2013), 267]

[PLB, 723 (2013), 267]

A narrowing is indeed observed in $\Delta\eta$ and $\Delta\phi$ going from peripheral to central collisions.

[PLB, 723 (2013), 267]

A narrowing is indeed observed in $\Delta\eta$ and $\Delta\phi$ going from peripheral to central collisions.

[PLB, 723 (2013), 267]

A narrowing is indeed observed in $\Delta\eta$ and $\Delta\phi$ going from peripheral to central collisions.

The observed centrality dependence is stronger than predicted by models even if they are tuned to reproduce the ALICE v₂ data (AMPT).

Summary & conclusion

Summary and conclusions

- Light flavor hadron yields at LHC energies can be described in a thermal fit based on the hadron resonance gas model with a chemical freeze-out temperature of $T_{chem} = 156$ MeV.
- In order to find deviations from HRG, the measurements of event-by-event fluctuations of conserved quantities (charge, baryon number, strangeness) are on their way...
- Measurements of net-charge fluctuations indicate a reduction of fluctuations from RHIC to LHC (as expected), but also emphasise the importance of systematic studies w.r.t. to the acceptance window etc.

SUPPORTING SLIDES

Thermodynamic susceptibilities (2)

• Moments µ and cumulants K:

$$\begin{array}{rclcrcrcrcrc} M & = & K_1 & = & \mu & = & \langle N \rangle & = & VT^3 \cdot \chi_1 \\ \sigma^2 & = & K_2 & = & \mu_2 & = & \langle (\delta N)^2 \rangle & = & VT^3 \cdot \chi_2 \\ S & = & K_3/\sigma^3 & = & \mu_3/\sigma^3 & = & \langle (\delta N)^3 \rangle / \sigma^3 & = & VT^3 \cdot \chi_3 / (VT^3 \cdot \chi_2)^{3/2} \\ \kappa & = & K_4/\sigma^4 & = & (\mu_4 - 3\mu_2^2) / \mu_2^2 & = & \langle (\delta N)^4 \rangle / \sigma^4 - 3 & = & (VT^3 \cdot \chi_4) / (VT^3 \cdot \chi_2)^2 \end{array}$$

• In ratios of cumulants, the volume dependence cancels:

$$\begin{array}{rclcrcrcrcrc} \chi_2/\chi_1 &=& K_2/K_1 &=& \mu_2/\mu &=& \sigma^2/M \\ \chi_3/\chi_1 &=& K_3/K_1 &=& \mu_3/\mu &=& S\cdot\sigma^2/M \\ \chi_3/\chi_2 &=& K_3/K_2 &=& \mu_3/\mu_2 &=& S\cdot\sigma \\ \chi_4/\chi_2 &=& K_4/K_2 &=& (\mu_4 - 3\mu_2^2)/\mu_2 &=& \kappa\cdot\sigma^2 \\ \chi_6/\chi_2 &=& K_6/K_2 &=& (\mu_6 - 15\mu_4\mu_2 - 10\mu_3^2 + 30\mu_2^3)/\mu_2 && . \end{array}$$

Fluctuations and lattice QCD

• Thermodynamic susceptibilities at $\mu_B = 0$ can be directly calculated in lattice QCD.

 The HRG is a very good approximation below T_c, but significant deviations at T_c are expected with increasing order of the moments due to remnants of the critical chiral behavior:

 $\chi_6/\chi_2 < 0$ at T_c in Lattice QCD and $\chi_6/\chi_2 = 1$ in HRG

Missing strange resonances (Lattice QCD)

[1404.6511]

ALI-PREL-74481

In equilibrium mode, the model describes the nuclei yields.

ALI-PREL-74481

In equilibrium mode, the model describes the nuclei yields.

In non-equilibrium mode and if nuclei are not included, the model converges to values of γ_q and γ_s which are significantly different from 1 and yields a slightly better description for protons and Ξ s.

-4

In equilibrium mode, the model describes the nuclei yields.

In non-equilibrium mode and if nuclei are not included, the model converges to values of γ_q and γ_s which are significantly different from 1 and yields a slightly better description for protons and Ξ s.

In non-equilibrium mode and *if nuclei are included*, the model converges to values of γ_q and γ_s which are in agreement with 1.

